Строительный портал - Винтажная Москва
Поиск по сайту

Основные операции порошковой металлургии. Способы порошковой металлургии

Порошковая металлургия -- технология получения металлических порошков и изготовления изделий из них (или их композиций с неметаллическими порошками). В общем виде технологический процесс порошковой металлургии состоит из четырёх основных этапов: производство порошков, смешивание порошков, уплотнение (прессование, брикетирование) и спекание.

Применяется как экономически выгодная замена механической обработки при массовом производстве. Технология позволяет получить высокоточные изделия. Также применяется для достижения особых свойств или заданных характеристик, которые невозможно получить каким-либо другим методом.

История и возможности

Порошковая металлургия существовала в Египте в III веке до н. э. Древние инки из драгоценных металлических порошков делали украшения и другие артефакты. Массовое производство изделий порошковой металлургии начинается с середины 19-го века.

Порошковая металлургия развивалась и позволила получить новые материалы -- псевдосплавы из несплавляемых литьём компонентов с управляемыми характеристиками: механическими, магнитными, и др.

Изделия порошковой металлургии сегодня используется в широком спектре отраслей, от автомобильной и аэрокосмической промышленности до электроинструментов и бытовой техники. Технология продолжает развиваться

Получение металлических порошков

Существует несколько способов получения металлических порошков. Физические, химические и технологические свойства порошков, форма частиц зависит от способа их производства. Вот основные промышленные способы изготовления металлических порошков:

Механическое измельчение металлов в вихревых, вибрационных и шаровых мельницах.

металлический титановый фильтр

Рис. 1

Распыление расплавов (жидких металлов) сжатым воздухом имели в среде инертных газов. Метод появился в 1960-х годах. Его достоинства -- возможность эффективной очистки расплава от многих примесей, высокая производительность и экономичность процесса.

Восстановление руды или окалины. Наиболее экономичный метод. Почти половину всего порошка железа получают восстановлением руды.

Восстановление оксидов и солей является одним из наиболее распространенных и экономичных способов, особенно когда в качестве исходного материала используют руды, отходы металлургического производства (окалина) и другие дешевые виды сырья. Восстановлением в техническом смысле этого слова, называют процесс получения металла из его химического соединения путем отнятия неметаллической составляющей (кислород, солевой остаток) при помощи вещества, называемого восстановителем. Процесс восстановления является одновременно и процессом окисления. Если исходное химическое соединение (оксид, соль) теряет неметаллическую составляющую или восстанавливается, то восстановитель вступает с ней во взаимодействие или окисляется.

В общем случае реакцию восстановления можно записать в виде

МеБ + Х - Ме + ХБ,

Где Ме - любой металл, порошок которого нужно получить;

Б - неметаллическая составляющая (кислород, солевой остаток и др.)восстанавливаемого исходного химического соединения;

Х - восстановитель;

ХБ - химическое соединение восстановителя.

Стрелки означают, что в ходе реакции возможно повторное образование исходного соединения (МеБ) в результате взаимодействия полученного металла (Ме) и соединения восстановителя (ХБ). Для оценки возможности протекания реакции восстановления необходимо сопоставить величины, характеризующие прочность химических связей в соединении металла (МеБ) и образующимся соединении восстановителя (ХБ). Количественной мерой указанных величин служит величина свободной энергии, высвобождающейся при образовании соответствующего химического соединения. Чем больше высвобождается энергии, тем прочнее химическое соединение. Поэтому реакция восстановления возможна лишь в случае, если при образовании соединения восстановителя (ХБ) выделяется энергии больше, чем при образовании соединения металла (МеБ).

Восстановителем может быть только то вещество, которое обладает большим химическим сродством к неметаллической составляющей восстанавливаемого соединения, чем получаемый металл. В порошковой металлургии в качестве восстановителя наиболее распространены:

  • - водород;
  • - оксид углерода (СО);
  • - конвертируемый природный газ;
  • - диссоциированный аммиак;
  • - эндотермический газ (эндогаз);
  • - твердый углерод (кокс, уголь, сажа);
  • - металлы.

Водород является одним из самых активных газов-восстановителей. В природе в свободном состоянии водород почти не встречается, и поэтому большое значение приобретают рациональные способы его промышленного производства. Практическое значение получили так называемый железо-паровой способ производства водорода и электролиз воды.

В железо-паровом процессе водород получают при обработке раскаленного (около 800 єС) железа водяным паром по реакциям

Fe + H2O = FeO + H2

3FeO + H2O = Fe 3 O 4 + H 2

Получаемый газ содержит до 98% водорода и имеет достаточно высокую стоимость, что ограничивает его применение в порошковой металлургии.

При получении водорода электролизом воды в качестве электролита используются водные растворы щелочей (NaOH, KOH) или кислот (H 2 SO 4), так как чистая вода плохо пропускает электрический ток. При пропускании постоянного тока через такие растворы происходит разложение воды на ионы водорода (H +) и ионы гидроксила (OH -) по схеме

H 2 O > H + + OH

Ионы водорода перемещаются к катоду, где отдают свой заряд, превращаясь в атомы водорода. В результате на катоде выделяется газообразный водород. Ионы гидроксила отдают свой заряд на аноде, в результате чего на аноде образуется вода и кислород. Получаемый таким способом газ содержит не менее 99,8% водорода.

Применение водорода для целей восстановления сравнительно ограниченно из-за высокой его стоимости. Кроме того, необходимо помнить о взрывоопасности водорода и строго соблюдать при работе с ним правила техники безопасности. Водородным восстановлением получают порошки вольфрама, молибдена, кобальта, железа, никеля и некоторых других сплавов.

Оксид углерода обычно получают газификацией малосернистого кокса или древесного угля с применением кислородного дутья по реакциям

Образующийся оксид углерода (СО) очищается от пыли, сернистых соединений, углекислоты, влаги и после очистки содержит не менее 92% СО. Стоимость получаемого оксида углерода высока, поэтому для производства металлических порошков восстановлением его практически не применяют. Конверторный природный газ. Природный газ содержит 93 - 98% метана(CH 4). Процесс конверсии заключается во взаимодействии метана с паром при температуре 900 - 1100 єС и в присутствии катализатора по реакции

CH 4 + H 2 O = 3H 2 + CO

Получаемый в промышленных печах конвертируемый газ содержит 75 -76% H 2 , 22 - 23% СО. Он в 8 - 10 раз дешевле водорода и в зависимости от его качества применяется для восстановления оксидов при производстве железного порошка, порошков среднеуглеродистых и легированных сталей, железоникелевых, железовольфрамовых и других сплавов.

Диссоциированный аммиак является дешевым и хорошим заменителем водорода. Разложение аммиака осуществляют в специальных реакторах (диссоциаторах) при температуре 600 - 650 єС. Диссоциированный аммиак содержит 75% H 2 и 25% N 2 и применяется в качестве восстановителя при производстве порошков кобальта, железа, никеля, вольфрама.

Эндотермический газ получают в результате сжигания природного газа или другого углеводородного газа при существенном недостатке воздуха с подводом тепла извне. Эндотермический газ (эндогаз) в последнее время находит широкое применение в порошковой металлургии, хотя обладает меньшей восстановительной способностью по сравнению с водородом. Это объясняется тем, что он более чем в десять раз дешевле водорода и менее взрывоопасен.

Процесс неполного сжигания природного газа ведут при недостатке воздуха в две стадии. На первой стадии кислород взаимодействует с метаном по реакции

CH 2 + 2O 2 = CO 2 + 2H 2 O

На второй стадии процесса избыточный метан реагирует с образовавшимся CO 2 и H 2 O по реакциям

CH 4 + CO 2 = 2CO + 2H 2

CH 4 + H 2 O = CO + 3H 2

Суммарный тепловой эффект реакций первой и второй стадий отрицательный, в связи с чем для поддержания процесса необходим дополнительный подвод тепла извне. Эндогаз, получаемый из природного газа, содержит 18 - 20% СО, 38 - 40% H 2 , около 1% CO, остальное N 2 . С применением эндогаза получают порошки железа и среднеуглеродистых сталей.

Твердый углерод при получении порошков восстановлением используется в виде кокса, древесного угля, сажи. Указанные материалы является сильными восстановителями, так как содержат 93 - 98% углерода. Существенным недостатком этих материалов, используемых в качестве восстановителей, является то, что они содержат нежелательные примеси (сера, зола, влага), переходящие в порошок и ухудшающие его свойства.

Металлотермический. Процесс восстановления химического соединения металлом называют металлотермическим, основанным на большом сродстве металла-восстановителя к кислороду или другому неметаллическому элементу соединения, чем восстанавливаемый металл. Высоким сродством к кислороду обладают кальций, магний, алюминий, натрий, калий, цирконий и бериллий. На практике для осуществления металлотермических реакций восстановления используют в основном кальций, магний, алюминий, натрий.

К металлам-восстановителям предъявляются требования, чтобы они не образовывали с получаемым металлом, сплавов и других соединений. Избыток восстановителя, а также побочные продукты реакции должны полностью отделяться от восстановленного металла.

Металлотермическим восстановлением получают порошки титана, тантала, ниобия, легированных сталей.

Электролитический метод.

Среди физико-химических методов получения металлических порошков электролитический способ по промышленному распространению занимает второе место после восстановления.

Получение порошков электролизом заключается в разложении водных растворов соединений выделяемого металла или его расплавленных солей при пропускании через них постоянного электрического тока и последующей разрядке соответствующих ионов металла на катоде.

При электролизе передача электричества в электролите, представляющем собой раствор солей, кислот и оснований, осуществляется движением положительных и отрицательных ионов, образующихся в результате диссоциации молекул указанных химических соединений. Ионы в электролите в отсутствие внешнего электрического поля движутся хаотически. При наложении электрического поля движение ионов становится упорядоченным, и катионы перемещаются к катоду, а анионы - к аноду.

Источник электрического тока является своеобразным двигателем или насосом, перемещающим электроны с одного полюса на другой. В результате такого принудительного перемещения электронов на катоде образуется избыток отрицательно заряженных электронов на катоде образуется избыток отрицательно заряженных электронов и он приобретает отрицательный заряд, а анод, лишившись части электронов, приобретает положительный заряд.

Источником ионов выделяемого металла является анод, состоящий из этого металла, и электролит, содержащий его растворимое соединение. В случае использования нерастворимого анода источником ионов выделяемого металла является только электролит.

Превращение иона металла в атом связано с расходом некоторого количества энергии. Поэтому в первую очередь протекает тот процесс разрядки, который требует меньших затрат энергии. В связи с этим электролиз является и процессом рафинирования, так как не все имеющиеся в электролите катионы при данных условиях могут выделиться на катоде. В этом случае метод электролиза позволяет получать порошки высокой чистоты, допускающий возможность использования даже загрязненных исходных материалов.

В зависимости от условий электролиза на катоде можно получать твердые хрупкие осадки в виде плотных слоёв, губчатые мягкие осадки и осадки рыхлые. Твёрдые и губчатые осадки для получения порошка измельчают, а рыхлые используют как готовый порошок. Основными факторами, влияющими на структуру катодного осадка является:

  • - концентрация ионов выделяемого металла;
  • - температура электролита;
  • - плотность тока.

Концентрация ионов выделяемого металла влияет на количество и качество катодного осадка. При электролизе выделение металла на катоде начинается не по всей его поверхности, а в отдельных местах, в первичных центрах кристаллизации. Повышение концентрации ионов выделяемого металла создаёт ускоренное питание этих центров, в результате чего формируется плотный осадок. Понижение концентрации ионов металла в электролите создаёт условия для образования рыхлого осадка. Однако при слишком малой концентрации в процесс электропереноса будут вовлекаться и другие ионы, что снизит количество катодного осадка.

Температура электролита. При повышении температуры увеличивается подвижность ионов ускоряется их перенос, сохраняется повышенная концентрация катионов у катода. В то же время повышается интенсивность химического взаимодействия выделяемого металла с электролитом, что приводит к снижению количества осадка металла на катоде. Кроме того, возрастает летучесть электролита, ухудшающая условия труда. Практически электролиз водных растворов ведут при температуре электролита 40 - 60 єС, а электролиз расплавов - при температуре ниже температуры плавления выделяемого металла, обеспечивая минимальное протекание побочных процессов.

Плотность тока представляет собой силу тока, проходящего через 1 м2 электрода. Она связывает силу тока, являющегося главным фактором, характеризующим её производительность, с суммарной рабочей площадью катодов или анодов в ванне:

где П - плотность тока, (А /м2);

J - сила тока, А;

S - суммарная рабочая площадь катодов или анодов, м2.

Катодная и анодная плотности тока в ванне не совпадают, так как суммарные поверхности катодов и анодов всегда различаются между собой в силу ряда причин. При большой плотности тока на единице площади катода разряжаются больше ионов и таким образом создаются много первичных центров кристаллизации. В связи с малой скоростью роста кристаллов образуются мелкие, дисперсные осадки. Однако высокая плотность тока приводит к выделению на катоде побочных элементов и снижает количество осадка выделяемого металла. Кроме того, с повышением катодной плотности тока растёт и анодная плотность тока, в результате чего на аноде начинается разрядка побочных ионов, приводящая к ухудшению технико-экономических показателей. Поэтому плотность тока должна быть максимально допустимой и не превышать оптимальное значение.

Изменение плотности тока осуществляется за счет изменения силы тока на ванне или изменением числа катодов (катодной поверхности) при постоянной силе тока.

На электролиз и свойства катодного осадка влияют и другие факторы. В частности, расстояние между электродами, длительность наращивания порошка, кислотность электролита, наличие в нем посторонних ионов, скорость циркуляции электролита, форма и состояние поверхности электродов и другие факторы.

Методом электролиза можно получать порошки всех металлов. В настоящее время электролизом получают порошки меди, железа, серебра, цинка, никеля, кадмия, олова, сурьмы, а также их сплавов.

Электролитический метод производства порошков характеризуется невысокой производительностью и довольно высокой себестоимостью получаемого порошка. Однако чистота и высокие технологические свойства электролитических порошков в значительной степени компенсируют недостатки метода.

Диссоциация карбонилов. Карбонилы представляют собой химические соединения металлов с оксидом углерода, которые можно выразить общей формулой Ме а (СО) с. В основе карбонильного метода лежит способность некоторых металлов под воздействием оксида углерода (СО) образовывать комплексное соединения, называемые карбонилами, которые при определённых условиях могут диссоциировать с образованием порошков. Общим требованием к таким соединениям при получении порошков является их легколетучесть и невысокие температуры образования и термического разложения.

Карбонильный процесс получения порошков проходит в две стадии по реакциям:

Ме а Б в + сСО > Ме а (СО) с

Ме a (СО) с > аМе + сСО

На первой стадии исходное сырьё (Ме а Б в) , содержащее металл (Ме) в соединении с балластным веществом (Б в) взаимодействует с оксидом углерода (СО), образуя промежуточный продукт - карбонил [Ме а (СО) с ] , который отделяется от балластной примеси благодаря высокой летучести и собирается в чистом виде.

Во второй стадии промежуточный продукт (карбонил) при нагреве диссоциирует на металл и оксид углерода, который обычно возвращают на первую стадию процесса.

Первую стадию карбонильного процесса называют синтезом карбонила металла, а вторую - термическим разложением карбонила.

При синтезе карбонила на поверхности исходного материала, который может быть металлоломом, отходами металлообработки, окисленными рудами и др., адсорбируются газообразные молекулы оксида углерода (СО), вступающие затем в химическое взаимодействие с металлической составляющей сырья.

Образующееся карбонильное соединение вначале остаётся на поверхности металла, удерживаемое силами сцепления, а затем удаляется с неё в виде газа. Реакция образования карбонила идёт везде, где оксид углерода соприкасается с поверхностью металла в исходном сырье, а именно снаружи твердого тела, в его трещинах и порах. На образование карбонила оказывают влияние температурные условия, а также присутствие веществ, тормозящих или ускоряющих реакцию.

Термическая диссоциация карбонила на металл и оксид углерода обычно проходит при относительно невысокой температуре. Сначала появляются атомы металла и газообразные молекулы оксида углерода. Порошковые частицы формируются в результате кристаллизации парообразного металла. Сначала образуются зародыши, а затем из них вырастают крупинки порошка различной формы.

На скорость образования зародышей и на скорость формирования металлических кристаллов влияют степень разряжения в аппарате, концентрация паров металла и главным образом температура. При относительно низкой температуре образуется значительно больше зародышей, чем при повышенной. Увеличение концентрации пара металла и снижение вакуума в аппарате благоприятствует образованию зародышей.

Условия развития зародышей отличны от условий их образования. Скорость роста кристаллов также зависит от температуры процесса и от концентрации паров металла. Однако глубина вакуума влияет на форму и размер частиц металла. В условиях глубокого вакуума образуются очень мелкие частицы с правильно сформированными гранями. В умеренном вакууме образуется смесь правильных кристаллов самых различных размеров, а в неглубоком вакууме появляются дендриты. В промышленных масштабах карбонильным методом производят порошки никеля, железа, кобальта, хрома, молибдена, вольфрама и некоторых других металлов. Метод позволяет получать и полиметаллические порошки, например железоникелевые, железомолибденовые, железокобальтовые, железоникельмолибденовые. В этом случае термическому разложению подвергают смесь карбонилов соответствующих металлов. Сами карбонилы при этом готовят отдельно. Сплавы можно получать и в том случае, если в аппарат разложения вместе с парами карбонила вводить порошок другого металла. Карбонил разлагается на поверхности порошковых частиц и образуется сплав.

Гидрометаллургический способ. Метод является одним из способов хлорной металлургии, в которой используются активные свойства хлора и хлоридов для получения редких металлов и веществ в высокочистом состоянии, когда другие известные методы не могут быть применены. Метод может быть использован и для получения легированного порошка из комплексных руд, содержащих никель, хром, ванадий и другие легирующие элементы, и перерабатываемые в настоящее время с большими потерями указанных элементов.

Сущность способа заключается в том, что металлосодержащий материал подвергается процессу восстановления. Полученный продукт обрабатывается соляной кислотой, в результате чего металл переходит в раствор образуя хлориды по схеме:

Ме + HCl > МеCl + H 2

Нерастворимые компоненты (пустая порода, зола и др.) остаются в осадке. Раствор отделяют от осадка фильтраций, упаривают до концентрации насыщения и подвергают кристаллизации. Полученные кристаллы хлоридов восстанавливают водородом.

Применительно к комплексным рудам в раствор переходят железо, никель, хром, ванадий, марганец. Нерастворимый осадок имеет самостоятельную ценность, так как после перевода в раствор железа и некоторых легирующих элементов он обогащается другими компонентами.

В термодинамическом отношении, характеризующем возможность получения легированного железа из руд хлоридным методом, представляют интерес три основные операции:

  • - восстановительный обжиг руды;
  • - растворение обожженной руды в соляной кислоте;
  • - восстановление хлоридов.

Расчеты показывают, что при восстановительном обжиге в интервале температур 700 - 1000 °С возможно восстановление оксидов железа и никеля. Оксиды остальных металлов в указанном температурном интервале не восстанавливаются. Однако, в присутствии железа возможно восстановление оксидов хрома и марганца, сопровождающегося образованием твердого раствора (Fe - Ме), снижающим сродство восстанавливаемого металла к кислороду.

Из приведённых зависимостей следует, что в присутствии железа равновесный состав газа беднее водородом и оксидом углерода. И образование раствора хрома и марганца в железе существенно облегчает процесс восстановления оксидов хрома и марганца и сдвигает его в область более низких температур.

Следовательно, при восстановительном обжиге комплексных руд возможно восстановление железа, никеля, хрома, марганца и при растворении обожженной руды в соляной кислоте они перейдут в раствор, образуя хлориды. Оксиды остальных элементов, входящих в состав руд, в этих условиях не восстанавливаются и перейдут в нерастворимый остаток.

Хлориды марганца и хрома при указанных температурах не восстанавливаются. Однако, восстановление их в присутствии металлического железа возможно при температурах 600 - 700 °С с образованием твердого раствора хрома и марганца в железе.

Таким образом термодинамические расчеты показывают на возможность осуществления основных операций хлоридного метода получения легированного железа из комбинированных руд. При обжиге возможно восстановление оксидов железа, никеля при температурах 700 - 1000 °С, а более прочных оксидов хрома имарганца - при 900 - 1000 °С в присутствии металлического железа с образованием твердых растворов этих элементов в железе. При растворении руды в соляной кислоте основные элементы переходят в раствор, образуя хлориды, восстановление которых возможно при температурах 600 - 700 °С.

Технологический процесс получения легированного железа из комплексных руд хлоридным методом представлен на рисунке 58. Усредненная на рудном дворе руда поступает в дробильное отделение. Сюда же подается твердый восстановитель. В процессе размола происходит равномерное перемешивание руды и восстановителя. Приготовленная шихта направляется на восстановительный обжиг. Для ускорения процесса обжиг проводится с использованием газообразного восстановителя. Подвергнутая восстановительному обжигу руда направляется в реакторы растворения, заполненные соляной кислотой.

Начальная стадия растворения происходит бурно, сопровождается интенсивным выделением водорода, который, пройдя системы осушки и очистки, подаётся на восстановление хлоридов. По мере снижения концентрации соляной кислоты и сокращения поверхности твердой фазы скорость реакции растворения падает. Для ускорения процесса растворения на конечном этапе реакционный объём обогревается паром, подаваемым в паровые рубашки реакторов.

Полученная в результате растворения пульпа, содержащая частицы нерастворимого остатка, подается на фильтрацию, где раствор отделяется от нерастворимого остатка. Отфильтрованный раствор поступает на выпаривание и кристаллизацию.

Кристаллы хлоридов направляются на восстановление, которое осуществляется с помощью водорода. Образующийся в ходе восстановления хлористый водород поступает на регенерацию соляной кислоты.

К числу основных достоинств гидрометаллургического способа следует отнести высокую чистоту порошка и почти полная регенерация водорода и соляной кислоты, образующихся на стадиях растворения металлосодержащего сырья и восстановления хлоридов. Кроме того, нерастворимый осадок имеет свою самостоятельную ценность, так как после перевода в раствор получаемого металла он обогащается другими ценными компонентами.

Для случая использования легированного металлосодержащего сырья можно регулировать состав получаемого порошка путем селективного восстановления сложных хлоридов.

Использование сильного тока приложенного к стержню металла в вакууме. Применяется для производства порошкового алюминия.

В промышленных условиях специальные порошки получают также осаждением, науглероживанием, термической диссоциацией летучих соединений (карбонильный метод) и другими способами.

Изготовление порошковых изделий

Типовой технологический процесс изготовления деталей методом порошковой металлургии состоит из следующих основных операций: смешивание, формование, спекание и калибрование.

Приготовление смеси

Смешивание -- это приготовление с помощью смесителей однородной механической смеси из металлических порошков различного химического и гранулометрического состава или смеси металлических порошков с неметаллическими. Смешивание является подготовительной операцией. Некоторые производители металлических порошков для прессования поставляют готовые смеси.

Формование порошка

Формование изделий осуществляем путем холодного прессования под большим давлением (30-1000 МПа) в металлических формах. Обычно используются жёсткие закрытые пресс-формы, пресс-инструмент ориентирован, как правило, вертикально. Смесь порошков свободно засыпается в полость матрицы, объёмная дозировка регулируется ходом нижнего пуансона. Прессование может быть одно- или двусторонним. Пресс-порошок брикетируется в полости матрицы между верхними и нижним пуансоном (или несколькими пуансонами в случае изделия с переходами). Сформированный брикет выталкивается из полости матрицы нижним пуансоном. Для формования используется специализированное прессовое оборудование с механическим, гидравлическим или пневматическим приводом. Полученная прессовка имеет размер и форму готового изделия, а также достаточную прочность для перегрузки и транспортировки к печи для спекания.

Таб. 1 Пример специализированных гидравлических прессов для порошковой металлургии и их характеристик

Спекание

Спекание изделий из однородных металлических порошков производится при температуре ниже температуры плавления металла. С повышением температуры и увеличением продолжительности спекания увеличиваются усадка, плотность, и улучшаются контакты между зернами. Во избежание окисления спекание проводят в восстановительной атмосфере (водород, оксид углерода), в атмосфере нейтральных газов (азот, аргон) или в вакууме. Прессовка превращается в монолитное изделие, технологическая связка выгорает (в начале спекания).

Калибрование

Калибрование изделий необходимо для достижения нужной точности размеров, улучшается качество поверхности и повышается прочность.

Дополнительные операции

Иногда применяются дополнительные операции: пропитка смазками, механическая доработка, термическая, химическая обработка и др.

Порошковая металлургия титана

Основная доля выпускаемого титана и сплавов на его основе подвергается вакуумной переплавке. При этом металл дополнительно рафинируется от летучих примесей и водорода. Однако вакуумное спекание, спрессованных из порошкообразного титана заготовок также оказывает значительное рафинирующее воздействие. Поэтому для ряда изделий и продуктов, в особенности при использовании чистого порошка титана, выгодно, а иногда необходимо применять методы порошковой металлургии.

Порошкообразные титан и его сплавы непосредственно применяют: в пиротехнике, в качестве инертного наполнителя для некоторых изделий из пластмасс и для покрытий емкостей в винодельческой и пищевой отраслях промышленности, для геттеров, некоторых катализаторов и т. д.

Только методами порошковой металлургии можно изготовлять всевозможные пористые изделия, коррозионностоикие фильтры для. различных растворов, нефтепродуктов, агрессивных газов и т. п.

Ряд изделий конструкционного назначения, в особенности сложной конфигурации, или небольшие детали, изготовляемые большими сериями, выгоднее производить прессованием из порошков титана или его сплавов в формы, близкие к формам готовых изделий, с последующим спеканием или горячим прессованием порошков, горячей ковкой спеченных заготовок в штампах и другими методами, принятыми в порошковой металлургии других металлов. При этом достигается большая экономия из-за уменьшения потерь и отходов металла на обточку слитков и на стружку и высечки при изготовлении изделий резанием или штамповкой из листовых, прутковых литых и прокатанных заготовок.

Изготовление заготовок спеканием из порошков для их дальнейшей обработки давлением обходится в ряде случаев дешевле, чем вакуумная плавка, особенно в случаях изготовления сплавов, которые приходится переплавлять дважды для равномерного распределения легирующих добавок.

Методами порошковой металлургии можно обеспечить более равномерное распределение легирующих элементов, замешивая их в форме порошков с исходным порошком титана. Возможно получение исходных порошков сразу в форме сплавов, например при добавке легирующих металлов в растворимый анодный материал или их соединений в электролит при получении порошков титана электролизом.

ЦНИИчерметом разработан метод введения легирующих элементов совместным восстановлением гидридом кальция смеси двуокиси титана с окислами легирующих элементов.

Методы порошковой металлургии позволяют изготовлять однородные сплавы с таким содержанием легирующих элементов, которое не удается обеспечить плавлением вследствие расслоения фаз, отличающихся по плотности.

В производстве прутковых и проволочных сварочных электродов из титановых сплавов достигается значительный технико-экономический эффект при использовании метода экструзии спеченных заготовок из смеси порошков титана с необходимыми легирующими добавками, в том числе и такими, как тугоплавкие карбиды, равномерное распределение которых трудно или невозможно достичь плавкой.

Методами порошковой металлургии производят ряд бескислородных соединений титана: гидрид титана, карбид, нитрид, карбонитрид, борид титана, применяемые в производстве твердых сплавов, для изготовления некоторых изделий в технике высоких температур, в составе наплавочных износостойких материалов и т. п.

В порошковой металлургии титана используют порошки, получаемые измельчением титановой губки, восстановлением двуокиси титана гидридом кальция, а также гидрированием отходов титана и его сплавов и электролитическим рафинированием. Для измельчения крупных и средних кусков вязкой титановой губки целесообразно ее предварительно прогидрировать для придания ей хрупкости. Порошок из гидрированных кусков губки содержит меньше примесей, чем самые мелкие фракции губки.

На операциях измельчения, гидрирования, дегидрирования, смешения порошка титана с легирующими добавками и при хранении порошков они должны быть предохранены от окисления и поглощения азота, чтобы содержание кислорода и азота в металле не превосходило допустимых пределов. В частности, не следует измельчать порошки менее 0,05 мм.

Можно прессовать непосредственно порошок гидрида титана, который более стоек против окисления, или смесь гидрида с дегидрированным порошком. Хрупкий порошок гидрида прессуется труднее, и брикеты из него имеют меньшую прочность, но он быстрее спекается вследствие образования активных кристаллов металла с большой концентрацией дефектов в них в результате разложения гидрида титана в процессе спекания в вакууме. Активированное спекание происходит и при спекании смеси порошков титана и гидрида титана.

Небольшие заготовки из порошка титана или его гидрида прессуют в стальных пресеформах под давлением от 3,5 до 8 Т/см2.

Крупные заготовки массой 50--100 кг и больше прессуют гидростатическим прессованием.

Спекание проводят в вакууме 10-4 мм рт. ст. при 1200--1400° С. Происходящее при 880° С превращение гексагональной модификации титана (а-титан) в кубическую в-титан) благоприятствует повышению подвижности атомов, что позволяет достигать значительной усадки в процессе спекания при указанных относительно невысоких температурах. При спекании следует медленно повышать температуру в области 500--800° С, когда выделяется большая часть водорода.

Конечная пористость изделий, спеченных из гидрида титана, около 2% при линейной усадке 12--14%. Так, при плотности спрее-сованных из гидрида изделий 3,2--3,8 г/см3 после спекания в течение 8 ч при 1300° С плотность возрастает до 4,45 г/см3. Вследствие большой усадки при спекании из гидридных порошков нельзя получить изделия точно заданных размеров.

При работе с более крупнозернистым титановым порошком, полученным измельчением губки, после спекания в течение 15 ч при 1000° С и 4 ч при 1200° С наблюдается линейная усадка только 4 -- 5%. Для получения плотного металла необходима промежуточная ковка (обжатие) заготовки и повторное спекание.

В СССР и за рубежом проводят исследования по повышению жаропрочности титана и его сплавов введением дисперсных тугоплавких твердых включений методами порошковой металлургии. Развиваются работы по обработке порошков титана и его сплавов давлением (в оболочках или без них), в том числе и горячей обработкой давлением в вакууме, что приобретает в последнее время важное значение в обработке ряда тугоплавких металлов. Сюда относятся процессы прокатки (пористых и беспористых) листов и лент, экструзии, ковки.

Представляет интерес возможность применения для формования заготовок и фасонных изделий из порошков титана и его сплавов таких новых эффективных методов, осваиваемых в порошковой металлургии других металлов, как горячее газовое изостатическое прессование (см. гл. II, § 5), импульсное прессование, горячая безотходная ковка фасонных изделий в штампах и др.

Освоение новых методов производства и обработки заготовок и изделий из титана и его сплавов создает условия интенсивного расширения масштабов производства и ассортимента продукции в порошковой металлургии титана и его сплавов.

Развитие порошковой металлургии титана основывается по современному состоянию производства в первую очередь на переработке отходов. В производстве титана и его сплавов и изделий из них в совокупности образуется отходов больше 70% от выпуска исходной титановой губки. Около 50% от всех образующихся отходов титана и его сплавов -- некондиционные; их нельзя подшихтовывать в плавку из-за большого содержания в них кислорода, азота и других примесей, а также из-за неконтролируемого содержания легирующих элементов (алюминия, марганца, ванадия, олова и др.) в случайных смесях отходов разных сплавов. Такие отходы или, во всяком случае, значительную их часть выгодно перерабатывать в порошки одним из описанных выше методов (гидрированием с последующей гидрометаллургией, электролитическим рафинированием).

По мере увеличения масштаба потребления титановых порошков и расширения различных технических требований к ним для разных областей применения, а также требований к снижению их стоимости может возникнуть необходимость в освоении и других методов их производства. Так, среди методов первичного производства порошка титана непосредственно из его основного полуфабриката -- четыреххлористого титана заслуживает внимания натриетермический метод восстановления, который при его одностадийном осуществлении дает достаточно мелкозернистый чистый порошок. Для легирования натриетермического порошка, равно как и магниетермической губки и порошка из нее, представляет интерес возможность добавления некоторых хлоридов легирующих элементов (молибдена, алюминия, ванадия и. др.) к хлориду титана перед его восстановлением.

В поисках новых путей производства дешевых порошков титана и его сплавов представляет интерес возможность использования дешевых и электропроводных анодных материалов в виде карбонитридов и оксикарбидов. Их получают углетермическим вскрытием титановых рудных концентратов, впоследствии из них электролитическим рафинированием производят титановый порошок.

В случае реализации процесса частичной сепарации титановой губки, восстановленной магнием из тетрахлорида с последующим гидрированием, измельчением и выщелачиванием примесей, часть измельченного и отмытого гидрида можно использовать для производства титанового порошка дегидрированием.

Для некоторых областей применения, например для производства фильтров.с высокой проницаемостью, представляет интерес применение порошков титана и его сплавов со сферической формой частиц. Такие порошки получают распылением из расплава инертным газом, распылением вращающегося титанового электрода, расплавляемого в электродуге, или плазменным нагревом в струе инертного газа.

В будущем дешевые порошки титана смогут производиться в количествах, значительно превышающих потребность в них порошковой металлургии. Порошки титана можно будет направлять и на вакуумную переплавку для производства литых сплавов титана.

Таким образом, методы плавки и порошковой металлургии в производстве титана должны развиваться параллельно, дополняя один другой.

Порошковая металлургия – отрасль промышленности, включающая в себя определенный набор способов производства металлических порошков, а также изготовление деталей из этих материалов. Это направление металлургии как способ получения готовых изделий начало активно развиваться около ста лет назад.

Плюсы производства

Такой способ производства деталей имеет ряд преимуществ, которые позволяют ему вытеснять более дорогие методы обработки металлов: , ковку и .

Существующий ряд преимуществ:

  • Экономичность – исходным материалом для изготовления порошков являются разного типа отходы, например, окалина. Этот отход металлургического производства больше нигде не используется, а методы порошковой металлургии позволяют компенсировать такие технологические потери.
  • Точность геометрических форм деталей. Изделия, изготовленные методом порошковой металлургии, не нуждаются в последующей обработке резанием. Следовательно, производство осуществляется с низким процентом отходов.
  • Высокая износостойкость изделий.
  • Простота технологического процесса.

Технология производства методом порошковой металлургии имеет много общего с изготовлением керамических изделий.

Эти процессы объединяет то, что сырьевой материал (в одном случае это песок и глина, в другом – металл) погружается в раскаленную печь. В итоге получается пористая структура материала. Такая схожесть технологических процессов привела к тому, что детали, изготовленные методом порошковой металлургии, называют металлокерамическими.

Технологический процесс производства порошков

Получение металлокерамической детали начинается с изготовления порошков. Порошки бывают разных фракций и различных размеров. Отсюда – различие в способах их производства.

Существуют две группы принципиально разных методов получения порошков:

  • Физико-механические методы – измельчение посредством механического воздействия на металлические частицы в твердой или жидкой фазе. Эти методы основаны на комбинировании статических и ударных нагрузок.
  • Химико-металлургические методы – изменение фазового состояния исходного сырья. Это восстановление окислов и солей, электролиз, термическая диссоциация карбонильных соединений.

Имеются ключевые моменты применяющихся способов производства металлических порошков:

  • Шаровой способ – мелкие металлические обрезки со стружкой дробятся и перетираются в шаровой мельнице.
  • Вихревой способ – нагнетание в специальных мельницах (при помощи вентиляторов) сильного воздушного потока, приводящего к взаимному столкновению частиц металла. На выходе получается качественно измельченный порошок, с блюдцеобразной формой зерен.
  • Применение специальных дробилок. Принцип действия таких устройств основан на измельчении металлических частиц с помощью ударного воздействия падающего груза.
  • Распыление – легкоплавкий металл, находящийся в жидкой фазе, распыляется потоком сжатого воздуха. После этого его отправляют для размельчения к быстровращающемуся диску.
  • Электролиз – металл восстанавливается из расплава под воздействием электрического тока, что делает его хрупким. Это свойство дает ему возможность легко перемалываться в мельнице до состояния порошка. Форма зерен порошка при этом дендритная.

Физико-механические методы

Порошок требуемых фракций получают в центробежных мельницах разного типа.

Первичное измельчение – промежуточный этап производства порошков. Его осуществляют в конусных и валковых дробилках. В этих устройствах получат мелкие частицы металла с размером, не превышающим 1 см.

Процедура измельчения может длиться, в зависимости от применяемой технологии, от одного часа до 3–4 суток. Когда требуется сократить этот процесс, применяются уже не шаровые, а вибрационные мельницы.

В таких мельницах интенсивность процесса возрастает за счет присутствия усилий резания и создания переменных напряжений. Окончательный размер порошковых частиц составляет от 0,009 мм до 1 мм.

С целью повышения производительности процесса измельчения, его осуществляют в условиях жидкостного воздействия – для недопущения распыления металла. Объем задействованной жидкости составляет 40% от массы измельчаемых частиц.

Для измельчения твердосплавных частиц применяют планетарные центробежные мельницы. Отрицательной стороной работы такого устройства считается периодичность ее работы.

Физико-механические методы не подходят в случае необходимости измельчения , обладающих высокой пластичностью. Пластичные металлы измельчаются вихревыми мельницами, их принцип действия основан на измельчении частиц путем их взаимных ударов.

Химико-металлургические методы

Чаще остальных применятся метод восстановления железа. Выполняется он из рудных окислов или окалины, образующейся в процессе горячей прокатки. Во время реакции восстановления металла нужно постоянно отлеживать количество газообразных соединений в составе порошка.

Превышение предельно допустимой нормы их содержания, приведет к повышенной хрупкости порошка. А это, в свою очередь, делает невозможным операцию прессования. Если избежать этого превышения не удалось, применяют вакуумную обработку, удаляющую большое количество газов.

Способ, основанный на распылении и грануляции – самый дешевый и простой при получении порошков. Дробление происходит под воздействием струй расплава или инертного газа. Распыление осуществляется с помощью форсунок. Регулируемые параметры процесса распыления – температура и давление газового потока. Охлаждение – водяное.

Применение электролиза как метода производства порошков наиболее целесообразно для задачи получения медных порошков, которые имеют высокую степень чистоты.

Производство порошковых изделий

Свойства металлических порошков

Порошки, как и любой другой материал, имеет ряд стандартных свойств, которые влияют на его технологическую пригодность. Специалисты к ним относят следующие свойства:

  • плотность порошков, именуемая пикнометрической, определяется химической чистотой порошка и степенью его пористости;
  • насыпной плотностью порошков называется его масса, полученная при свободном наполнении емкости определенного объема;
  • текучестью порошков считается быстрота наполнения емкости определенного объема. Это очень важный технологический параметр, потому как от него зависит производительность последующего прессования;
  • пластичность – свойство порошков принимать заданную форму и сохранять ее после прекращения нагрузки.

Получение изделий из порошков

В независимости от метода получения металлических порошков, его дальнейший путь лежит через обработку давлением с помощью специальных пресс-форм.

Для формообразования изделий из порошков применяют прессование с применением пресс-форм, прокатку и шликерную формовку.

Последняя является аналогом литья расплавленного металла в форму. Таким способом изготавливаются детали, имеющие форму тел вращения.

Формовка

Формование порошков – подготовительная операция, предваряющая процесс прессования. Включает в себя термообработку, подготовку смеси и дозировку. Повысить свойства пластичности порошков помогает термический отжиг.

Термообработка проходит в среде защитных газов при температуре от 40 до 60 процентов от температуры плавления металла. Для получения однородности состава порошков, они подвергаются обязательно операции сепарирования: просеивания металлических частиц через специальные сита. Только после того, как порошок просеян, следует переходить к приготовлению смеси порошков нужного состава.

Прессование

Суть процесса прессования заключается в плотном соединении частичек металлического порошка друг с другом. Рабочее давление механического пресса при этом составляет от 1 до 6 тыс. кг на квадратный сантиметр.

Изделия, полученные прессованием, не имеют высоких прочностных характеристик. Поэтому им требуется термообработка, заключающаяся в спекании порошков. Частицы металла в процессе расплавления образуют между собой крепкие межатомные связи, делая деталь однородной по своей структуре.

Стоит отметить, что часто операции прессования и спекания объединены в одну – горячее прессование.

Причем нагрев в этом случае осуществляют токами высокой частоты.Производство деталей из порошков методом горячего прессования значительно сокращает время, затрачиваемое на их изготовление.

Этот фактор позволяет экономить энергетические ресурсы и снижает себестоимость производства изделий.

Области применения деталей порошковой металлургии

Порошковая индустрия как способ изготовления и обработки металлов очень разнообразен по своим технологическим методам. Это дает возможность получать детали требуемого состава и необходимых свойств.

Применяя методы порошковой металлургии производства, специалисты могут производить новейшие композитные материалы, получения которых традиционными методами невозможно. Производство деталей машин и механизмов из металлических порошков дает существенную экономию на материале, за счет получения низкого расходного коэффициента.

Металлокерамические изделия применяются в широком спектре областей приборостроения, радиоэлектроники и . Применяются порошки и в производстве режущего инструмента: резцов, сверл.

Сверла изготавливаются из порошкового металла

Производство изделий из металлических порошков в настоящий момент имеет высокую степень автоматизации. Технологическая простота операций позволяет применять работников без высокой квалификации. Эти факторы благоприятно отражаются на себестоимости продукции порошковой металлургии.

При уровне пористости порошков, который не превышает норму, они не уступают по показателю коррозионной стойкости. Особенно деталям, изготовленными стандартными способами.

Изделия порошковой металлургии обладают способностью хорошо переносить резкие скачки температур. Поэтому они применяются в средах, работающих в таких условиях.

Детали узлов трения

Специфика применения металлокерамических изделий обусловлена их свойством хорошо удерживать смазочные материалы. Эта их особенность определяется пористой структурой.

Это свойство способствует изготовлению из порошков деталей, испытывающих в своей работе трение: подшипники скольжения, направляющие втулки, вкладыши, щетки электродвигателей.

Пористая структура подшипников из порошков позволяет пропитывать их маслом. Впоследствии смазка попадает на трущиеся поверхности. Такие подшипники получили название самосмазывающиеся.

Они имеют следующие достоинства:

  • экономичность – применение таких подшипников позволяет уменьшить расход масла;
  • износостойкость;
  • экономия на материале. Замена дорогостоящей бронзы и баббита на железо.

Свойство пористости металлокерамических деталей специалисты могут усилить, если при изготовлении добавлять в них графит, который, как известно, обладает высокими смазывающими свойствами. Подшипники с повышенным содержанием графита не нуждаются в применении масла.

Композитные материалы

Большое развитие порошковая индустрия получила с развитием высокотехнологичной техники, требующей изделий из композитных материалов. Отличие композитов от сплавов состоит в возможности получать прочные соединения разнородных металлических и неметаллических компонентов.

Выплавка традиционным способом в металлургических печах не создает растворов, например, вольфрама и . После возникновения композитных материалов эта проблема была решена.

Достигается такой результат обыкновенным смешиванием нужных компонентов, приданием формы на прессе с последующим спеканием.

Ядерное топливо также является композитным материалом.

Твердые сплавы

Твердосплавные изделия получают методами металлокерамики. Повышенная твердость достигается включением в состав карбидных включений. Как известно, с увеличением доли углерода в металле, возрастает его твердость.

Карбидные соединения дают высокую вязкость, сохраняя прочностные свойства порошка. Металлокерамические детали нужны там, где необходима их высокая износостойкость. Чаще всего, это режущий инструмент, а также твердосплавные матрицы и пуансоны для листовой штамповки.

Контактные материалы

Изделия из электроконтактных материалов. Порошковая индустрия незаменима для производства электрических контактов, применяемых в электронике и радиотехнике. В этих отраслях применяются так называемые ферромагнитные порошки.

Другие сферы применения порошков

Еще одним полезным свойством порошков является их жаростойкость, что позволяет применять их в различных тормозных механизмах. Жаростойкие свойства металлокерамики возрастают с добавлением в ее состав хрома, никеля и вольфрама.

Практически все современные магнитные детали производятся из металлических порошков. Технология порошковой металлургии позволяет получить соединения железа с различными силикатами.

Применяют металлокерамические изделия также для фильтрации газов и горючих веществ.

Недостатки порошков

Среди недостатков методов порошковой металлургии следует выделить невозможность изготовления деталей, имеющих сложную геометрическую форму, а также относительно небольшой размер изделий. Прочность и однородность структуры порошков уступает деталям, изготовленным методами , горячей ковки и .

Детали, изготовленные из порошков, имеют более низкую плотность, в сравнении с деталями, изготовленными обработкой металлов давлением. Этот фактор имеет повышенное значение, когда нужно облегчить какой-либо узел механизма. Это дает возможность инженерам-конструкторам решать задачи уменьшения расхода металла, не теряя эксплуатационных свойств деталей.

Порошковая металлургия требует строго соблюдения мер пожарной безопасности. Склонность к самовозгоранию порошков – опасный производственный фактор, требующий четкого соблюдения правил техники безопасности.

Будущее порошковой металлургии

Развитие порошковой металлургии обязано преследовать цель увеличения номенклатуры изделий, которые мастера могут изготовить этим способом.

Детали сложных конфигураций, которые сейчас получают на заводах только обработкой резанием, должны в будущем изготавливаться методами порошковой металлургии. Это позволит уменьшить материалоемкость производства сложных деталей.

Дальнейшая автоматизация производственного процесса – отличительная черта современных промышленных предприятий. Касается она и производства изделий из металлических порошков.

Снижение влияния человеческого фактора на технологический процесс, повышает точность изготовления деталей.

Качество изделий порошковой металлургии с течением времени должно конкурировать с передовыми технологиями производства деталей машин и механизмов. Повышение качества и снижение себестоимости готовой продукции – приоритетная задача предприятий порошковой металлургии.

Видео: Получение порошков

Порошковая металлургия I Порошко́вая металлурги́я

область техники, охватывающая совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них (или их смесей с неметаллическими порошками) без расплавления основного компонента. Технология П. м. включает следующие операции: получение исходных металлических порошков и приготовление из них шихты (смеси) с заданными химическим составом и технологическими характеристиками; формование порошков или их смесей в заготовки с заданными формой и размерами (главным образом Прессование м); спекание, т. е. термическую обработку заготовок при температуре ниже точки плавления всего металла или основной его части. После спекания изделия обычно имеют некоторую пористость (от нескольких процентов до 30-40%, а в отдельных случаях до 60%). С целью уменьшения пористости (или даже полного устранения её), повышения механических свойств и доводки до точных размеров применяется дополнительная обработка давлением (холодная или горячая) спечённых изделий; иногда применяют также дополнительную термическую, термохимическую или термомеханическую обработку. В некоторых вариантах технологии отпадает операция формования: спекают порошки, засыпанные в соответствующие формы. В ряде случаев прессование и спекание объединяют в одну операцию т. н. горячего прессования - обжатия порошков при нагреве.

Получение порошков. Механическое измельчение металлов производят в вихревых, вибрационных и шаровых мельницах. Другой, более совершенный метод получения порошков - распыление жидких металлов: его достоинства - возможность эффективной очистки расплава от многих примесей, высокая производительность и экономичность процесса. Распространено получение порошков железа, меди, вольфрама, молибдена высокотемпературным восстановлением металла (обычно из окислов) углеродом или водородом. Находят применение гидрометаллургические методы восстановления растворов соединений этих металлов водородом. Для получения медных порошков наиболее часто используют электролиз водных растворов. Имеются и другие, менее распространённые методы приготовления порошков различных металлов, например электролиз расплавов и термическая диссоциация летучих соединений (карбонильный метод).

Формование порошков. Основной метод формования металлических порошков - прессование в пресс-формах из закалённой стали под давлением 200-1000 Мн/м 2 (20-100 кгс/мм 2 ) на быстроходных автоматических прессах (до 20 прессовок в 1 мин ). Прессовки имеют форму, размеры и плотность, заданные с учётом изменения этих характеристик при спекании и последующих операциях. Возрастает значение таких новых методов холодного формования, как изостатическое прессование порошков под всесторонним давлением, прокатка и Экструзия порошков.

Спекание проводят в защитной среде (водород; атмосфера, содержащая соединения углерода; вакуум; защитные засыпки) при температуре около 70-85% от абсолютной точки плавления, а для многокомпонентных сплавов - несколько выше температуры плавления наиболее легкоплавкого компонента. Защитная среда должна обеспечивать восстановление окислов, не допускать образования нежелательных загрязнений продукции (копоти, карбидов, нитридов и т.д.), предотвращать выгорание отдельных компонентов (например, углерода в твёрдых сплавах), обеспечивать безопасность процесса спекания. Конструкция печей для спекания должна предусматривать проведение не только нагрева, но и охлаждения продукции в защитной среде. Цель спекания - получение готовых изделий с заданными плотностью, размерами и свойствами или полупродуктов с характеристиками, необходимыми для последующей обработки. Расширяется применение горячего прессования (спекания под давлением), в частности изостатического.

П. м. имеет следующие достоинства, обусловившие её развитие. 1) Возможность получения таких материалов, которые трудно или невозможно получать др. методами. К ним относятся: некоторые тугоплавкие металлы (вольфрам, тантал); сплавы и композиции на основе тугоплавких соединений (твёрдые сплавы на основе карбидов вольфрама, титана и др.): композиции и т. н. псевдосплавы металлов, не смешивающихся в расплавленном виде, в особенности при значительной разнице в температурах плавления (например, вольфрам - медь); композиции из металлов и неметаллов (медь - графит, железо - пластмасса, алюминий - окись алюминия и т.д.); пористые материалы (для подшипников, фильтров, уплотнений, теплообменников) и др. 2) Возможность получения некоторых материалов и изделий с более высокими технико-экономическими показателями. П. м. позволяет экономить металл и значительно снижать себестоимость продукции (например, при изготовлении деталей литьём и обработкой резанием иногда до 60-80% металла теряется в литники, идёт в стружку и т.п.). 3) При использовании чистых исходных порошков можно получить спечённые материалы с меньшим содержанием примесей и с более точным соответствием заданному составу, чем у обычных литых сплавов. 4) При одинаковом составе и плотности у спечённых материалов в связи с особенностью их структуры в ряде случаев свойства выше, чем у плавленых, в частности меньше сказывается неблагоприятное влияние предпочтительной ориентировки (текстуры), которая встречается у ряда литых металлов (например, бериллия) вследствие специфических условий затвердевания расплава. Большой недостаток некоторых литых сплавов (например, быстрорежущих сталей и некоторых жаропрочных сталей) - резкая неоднородность локального состава, вызванная ликвацией (См. Ликвация) при затвердевании. Размеры и форму структурных элементов спечённых материалов легче регулировать, и главное, можно получать такие типы взаимного расположения и формы зёрен, которые недостижимы для плавленого металла. Благодаря этим структурным особенностям спечённые металлы более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжений, а также ядерного облучения, что очень важно для материалов новой техники.

П. м. имеет и недостатки, тормозящие её развитие: сравнительно высокая стоимость металлических порошков; необходимость спекания в защитной атмосфере, что также увеличивает себестоимость изделий П. м.; трудность изготовления в некоторых случаях изделий и заготовок больших размеров; сложность получения металлов и сплавов в компактном беспористом состоянии; необходимость применения чистых исходных порошков для получения чистых металлов.

Недостатки П. м. и некоторые её достоинства нельзя рассматривать как постоянно действующие факторы: в значительной степени они зависят от состояния и развития как самой П. м., так и др. отраслей промышленности. По мере развития техники П. м. может вытесняться из одних областей и, наоборот, завоёвывать другие. Впервые методы П. м. разработали в 1826 П. Г. Соболевский и В. В. Любарский для изготовления платиновых монет. Необходимость использования для этой цели П. м. была обусловлена невозможностью достижения в то время температуры плавления платины (1769 °С). В середине 19 в. в связи с развитием техники получения высоких температур промышленное использование методов П. м. прекратилось. П. м. возродилась на рубеже 20 в. как способ производства из тугоплавких металлов нитей накала для электрических ламп. Однако развивавшиеся в дальнейшем методы дугового, электроннолучевого, плазменного плавления и электроимпульсного нагрева позволили получать не достижимые ранее температуры, вследствие чего удельный вес П. м. в производстве этих металлов несколько снизился. Вместе с тем прогресс техники высоких температур ликвидировал такие недостатки П. м., ограничивавшие её развитие, как, например, трудность приготовления порошков чистых металлов и сплавов: метод распыления даёт возможность с достаточной полнотой и эффективностью удалить в шлак примеси и загрязнения, содержавшиеся в металле до расплавления. Благодаря созданию методов всестороннего обжатия порошков при высоких температурах в основном преодолены и трудности изготовления беспористых заготовок крупных размеров.

В то же время ряд основных достоинств П. м. - постоянно действующий фактор, который, вероятно, сохранит своё значение и при дальнейшем развитии техники.

Лит.: Федорченко И. М., Андриевский Р. А., Основы порошковой металлургии, К., 1961; Бальшин М. Ю.. Научные основы порошковой металлургии и металлургии волокна, М., 1972; Кипарисов С. С., Либенсон Г. А., Порошковая металлургия, М., 1972.

М. Ю. Бальшин.

II Порошко́вая металлу́рги́я («Порошко́вая металлу́рги́я»)

ежемесячный научно-технический журнал, орган института проблем материаловедения АН УССР. Выходит с 1961 в Киеве. Публикует статьи по теории, технологии и истории порошковой металлургии, о тугоплавких соединениях и высокотемпературных материалах. Тираж (1974) 2,3 тыс. экз. Переиздаётся на английском языке в Нью-Йорке.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Порошковая металлургия" в других словарях:

    Порошковая металлургия технология получения металлических порошков и изготовления изделий из них (или их композиций с неметаллическими порошками). В общем виде технологический процесс порошковой металлургии состоит из четырёх основных… … Википедия

    ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, производство порошков металлов и изделий из них. Порошки прессуются в желаемые формы и затем нагреваются несколько ниже ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ. Использование порошков является более экономичным, чем использование… … Научно-технический энциклопедический словарь

    порошковая металлургия - Ндп. металлокерамика Область науки и техники, охватывающая производство металлических порошков а также изделий из них или их смесей с неметаллическими порошками. [ГОСТ 17359 82] Недопустимые, нерекомендуемые металлокерамика Тематики порошковая… … Справочник технического переводчика

    Современная энциклопедия

    Производство порошков металлов и изделий из них, их смесей и композиций с неметаллами. Порошки вырабатываются механическим измельчением или распылением жидких исходных металлов, высокотемпературным восстановлением и термической диссоциацией… … Большой Энциклопедический словарь

    Порошковая металлургия - ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, производство металлических порошков и изделий из них, их смесей и композиций с неметаллами, а также изделий с различной степенью пористости. Изделия получают прессованием с последующей или одновременной термической,… … Иллюстрированный энциклопедический словарь

    порошковая металлургия - раздел науки и отрасль металлургической и машиностроительной промышленности, включающий технологические процессы получения порошков металлов, сплавов и химических соединений, производства из них полуфабрикатов и готовых… … Энциклопедический словарь по металлургии

    Порошковая металлургия - 1. Порошковая металлургия Ндп. Металлокерамика D. Pulvermetallurgie Е. Powder metallurgy F. Métallurgie des poudres Источник: ГОСТ 17359 82: Порошковая металлургия. Термины и определения оригинал документа Смотри также родствен … Словарь-справочник терминов нормативно-технической документации

    Область науки и техники, охватывающая совокупность методов изготовления порошков металлов, сплавов и металлоподобных соед., полуфабрикатов и изделий из них или их смесей с неметаллич. порошками без расплавления осн. компонента. Практика… … Химическая энциклопедия

    Технология получения металлических порошков и изготовления изделий из них, а также из композиций металлов с неметаллами. В обычной металлургии металлические изделия получают, обрабатывая металлы такими методами, как литье, ковка, штампование и… … Энциклопедия Кольера

    Отрасль науки и техники, занимающаяся получением порошков металлов, сплавов и бескислородных соединений, а также материалов и изделий на их основе. Получение кислородных соединений типа оксидов – это область керамического производства, хотя… … Энциклопедия техники

Книги

  • Порошковая металлургия. Инженерия поверхности, новые порошковые композиционные материалы. Сварка. Часть 1 , Сборник статей , В настоящий сборник включены доклады Международного симпозиума «Порошковая металлургия: инженерия поверхности, новые порошковые композиционные материалы. Сварка» (10–12 апреля 2013 г.),… Категория: Техническая литература Серия: Сборник докладов 8-ого Международного симпозиума (Минск, 10-12 апреля 2013 г.) Издатель:

Порошковая металлургия – это отрасль техники, включающая изготовление порошков из металлов и их сплавов и получение из них заготовок изделий без расплавления основного компонента.

В настоящее время расширяется сфера применения порошковой металлургии в различных областях промышленности, совершенствуется ее технология. Относительно небольшие производственные расходы на получение изделий из порошковых материалов в сочетании с возможностью придания им заданных свойств, окончательной формы и размеров практически без проведения механической обработки выдвинули порошковую металлургию в ряд более эффективных и перспективных технологий. Эта технология успешно конкурирует с литьем, обработкой давлением, резанием и другими методами обработки металлов, дополняя или заменяя их.

Технологический процесс производства порошковых изделий заключается в получении порошка исходных материалов, состоящих из шихты, прессования порошков и спекания изделий. Каждая из указанных операций вносит свой существенный вклад в формирование исконных свойств порошковых изделий. На практике возможны отклонения от приведенной типовой технологической схемы получения порошковых материалов, которые могут выражаться в совмещении операций прессования и спекания (горячее прессование), спекания свободно насыпанного порошка (отсутствует операция уплотнения), проведении дополнительной обработки (калибрование, механическая и химико-термическая обработка) и др. Методами порошковой металлургии получают: твердые сплавы для изготовления режущего, бурового инструмента, а также деталей, подвергающихся интенсивному изнашиванию; высокопористые материалы для изготовления фильтров, используемых для очистки жидкостей от твердых включений, воздуха, газа, пыли и т.д.; антифрикционные материалы для производства подшипников скольжения, втулок, вкладышей и других деталей, работающие в тяжелых условиях эксплуатации; фрикционные материалы для получения деталей узлов трения сцепления и тормозных систем машин; жаропрочные и жаростойкие материалы для производства изделий, работающих в условиях высоких температур и в сильно агрессивных газовых средах; материалы сложных составов (псевдосплавы) для изготовления электрических контактов, которые получить другими способами невозможно; магнитные материалы для изготовления постоянных магнитов, магнитоэлектриков, ферритов и т. д.



Получение металлических порошков является важнейшей задачей технологического процесса изготовления деталей из порошковых материалов, от решения которой зависят их основные свойства.

В настоящее время существуют различные методы изготовления порошков, каждый из которых обеспечивает определенные характеристики.

Металлические порошки различаются как по размерам (от долей микрометра до долей миллиметра), так и по форме и состоянию поверхности частиц.

Все известные способы производства порошков условно разделяют на механические и физико-химические.

Механические методы получения порошков – дробление и размол, распыление, грануляция – характеризуются переработкой материалов в порошок практически без изменения их химического состава.

Физико-химические методы – восстановление, термическая диссоциация карбонильных соединений – отличаются тем, что получаемый порошок по химическому составу существенно отличается от исходного материала.

Одним из физико-химических методов получения порошков является восстановление оксидов и других соединений металлов.

Под восстановлением в порошковой металлургии понимают процесс получения металлов из их химических соединений путем отнятия неметаллической составляющей (кислорода и других элементов) при помощи восстановителя.

Металлические порошки характеризуются технологическими, физическими и химическими свойствами, основные из которых регламентируются ГОСТами и техническими условиями.

Под формованием заготовок из порошковых материалов следует понимать процесс получения заготовок требуемых форм и размеров, а также достаточной прочности для последующего изготовления из них изделий. Формование предполагает уплотнение порошка. Процесс уплотнения порошкового материала в отличие от деформирования компактного металла сопровождается значительным изменением объема прессуемого тела.

Приготовление шихты производят в мельницах, смесителях и др.

Для этого дозированные порции компонентов определенного гранулометрического и химического состава смешивают в указанных устройствах, добавляя в случае необходимости различные технологические присадки: пластификаторы, облегчающие процесс прессования; легкоплавкие присадки, улучшающие спекание; летучие вещества для получения изделий с заданной пористостью. При смешивании порошков материалов, резко различающихся по своим свойствам (например, железа и графита), в целях получения наиболее однородной смеси применяют добавки спирта, бензина, глицерина и др.

Уплотнение производят на гидравлических или механических прессах, давление прессования составляет 200 – 1000 МПа в зависимости от свойств порошка и назначения изделия. Детали пресс-форм выполняют из высокоуглеродистых легированных сталей (инструментальных сталей), твердых сплавов. Стойкость стальных пресс-форм составляет 1 – 50 прессовок, пресс-форм из твердых сплавов – до 500 тыс. прессовок.

Динамическое прессование – это формование заготовок с использованием импульсных нагрузок, отличающееся высокой скоростью их приложения. В качестве источника энергии используют: взрыв заряда взрывчатых веществ, импульсное магнитное поле, сжатый газ и т.д. Высокоскоростное прессование в настоящее время используется при изготовлении высокоплотных крупногабаритных заготовок из труднодеформируемых металлических порошков и порошков керамических материалов.

Операция спекания состоит в нагреве и выдержке заготовок при температуре, составляющей 0,7 – 0,8 от абсолютной температуры плавления основного компонента спекаемой композиции. Средняя продолжительность выдержки составляет 1 – 2 ч.

Различают спекание в твердой и жидкой фазах . Спекание в твердой фазе производится при температуре, меньшей температуры плавления компонентов смеси, при спекании в жидкой фазе – при температуре, превышающей температуру плавления одного или нескольких компонентов исходного материала. Спекание в жидкой фазе позволяет получать более плотные изделия за счет активизации капиллярных явлений, приводящих к закрытию пор.

При необходимости порошковые изделия подвергают отделочным операциям: калиброванию, обработке резанием, термической и химико-термической обработке, повторному спеканию, повторному прессованию.

Применение методов порошковой металлургии для изготовления изделий позволяет достигать высокой производительности труда и значительной экономии средств в народном хозяйстве страны. Экономия достигается за счет получения изделий высокой прочности, рационального использования металла, снижения его потерь, повышения качества изделий, создания новых прогрессивных деталей и др.

Если обычное изготовление деталей на металлорежущих станках сопровождается потерями до 20 – 80 % металла, связано с необходимостью выполнения большого числа технологических операций и значительными трудозатратами, то получение изделий методами порошковой металлургии отличается тем, что при числе операций 3 – S отходы металла составляют всего 5 – 10 %. Кроме того, производство порошковых изделий сосредоточено в основном на одном предприятии, не требует большого станочного парка и высокой квалификации рабочих. Изготовление деталей обычного состава методами порошковой металлургии дает возможность уменьшить по сравнению с обработкой резанием удельный расход металла в 3 – 5 раз, трудозатраты – в 2 – 8 раз, себестоимость изготовления деталей – в 1,5 – 3 раза и повысить производительность труда в 1,5 – 2 раза.

Многие изделия, изготовленные методами порошковой металлургии, обладают более высокими качествами, чем изделия, полученные традиционными методами. Так, стойкость инструмента из порошка быстрорежущей стали в 3 – 4 раза больше стойкости инструмента из литой стали.

Эффективность порошковой металлургии повышается в условиях массового производства изделий. Так, в массовом производстве при изготовлении 1 тыс. т деталей методами порошковой металлургии экономится около 1,3 млн. рублей, свыше 2000 т стали, высвобождается более 200 рабочих и 50 металлорежущих станков. С увеличением объема выпуска себестоимость снижается по сравнению с себестоимостью литых заготовок.

Порошковая металлургия - отрасль технологии, занимающаяся изготовлением материалов и деталей из металлических порошков.


Порошковая металлургия позволяет получать материалы и детали, обладающие высокой жаропрочностью, износостойкостью, стабильными магнитными свойствами, полупроводниковые материалы, материалы, не смешивающиеся в расплавленном виде и не образующие твердых растворов, пористые материалы, материалы высокой чистоты, заданного химического состава и др.


Методами порошковой металлургии зачастую могут быть получены детали, которые получают и литьем, но при этом потери значительно меньше: 3– 7%, тогда как при литье они достигают 50–80%. Механические свойства полученных изделий незначительно уступают свойствам литых и кованых изделий. Изделия, полученные порошковой металлургией, по точности размеров и шероховатости поверхности не требуют дополнительной обработки.


Сущность способа заключается в спекании при высокой температуре специально подготовленного брикета. Брикет получают прессованием металлических порошков под давлением. По форме и размерам брикет представляет собой будущую деталь.


Металлические порошки получают двумя основными методами: механическим (размол в шаровых или вихревых мельницах) и физико-химическим (восстановление из окислов, электролиз и др.)


Технологический процесс металлокерамики складывается из следующих операций: 1) приготовление шихты требуемого состава; 2) дозирование; 3)


формование детали; 4) спекание; 5) калибровка.


Сначала порошки очищают химическим, гидромеханическим или магнитным способами, затем проводят измельчение для выравнивания зернистости в шаровых мельницах. Возникающий при этом наклеп снимают отжигом в защитной атмосфере. Далее шихту просеивают и смешивают в вибрационных или барабанных смесителях.


Полученную шихту дозируют по массе или по объему.



Рисунок 1 –


Формование (получение брикета заданной формы и размеров) осуществляют путем прессования в стальных пресс-формах, реже прокаткой (для получения листа, полосы или ленты). Прессование осуществляют на механических и гидравлических прессах, жидкостью через пластичную оболочку, взрывом и т.д. В зависимости от размеров детали применяют одностороннее или двухстороннее (рисунок 1) прессование.


Спекание отформованных брикетов (деталей) производят в водородных или вакуумных печах при температуре t сп =(0,7–0,8)t пл , 0С, где t пл – температура плавления основного компонента шихты.


В результате спекания происходит настолько прочное сцепление частиц порошка (вследствие диффузии), что отдельные частицы порошка как бы перестают существовать самостоятельно. В результате спекания происходит: а) упрочнение и изменение физико-химических свойств, вследствие изменения величины и качества контактных участков; б) изменение размеров детали (усадка или рост); в) изменение микроструктуры (рост зерен и др.).


Время спекания составляет 0,5–6 часов. Горячее прессование, заключающееся в одновременном прессовании и спекании, сокращает время в 20–30 раз, производится при более низкой температуре и давлении, чем спекание. Однако недостатком горячего прессования является малая стойкость пресс-форм.


Калибровка в специальных пресс-формах (после спекания) при давлениях до 1000 МПа повышает точность до 8–10 квалитетов и снижает шероховатость поверхности до R z = 10–3,2 мкм . После калибрования на поверхность детали можно наносить любое гальваническое или другое покрытие. Размеры калибровочных пресс-форм должны отличаться от номинальных размеров детали на величину упругого последействия, составляющего 0,11–0,12%.


Рассмотренная технология нашла самое широкое применение в промышленности, в том числе и при производстве и ремонте вооружения. Так получают весь твердосплавный режущий инструмент (из смеси порошков карбидов вольфрама, титана, тантала и связки - кобальта); жаропрочные спеченные алюминиевые порошки (САП) и сплавы (САС); спеченные ленту и проволоку для наплавки при восстановлении деталей вооружения; пористые спеченные материалы с заданным размером пор для изготовления подшипников, фильтров и т.п.; спеченные материалы с закрытыми порами (газонаполненные материалы), сердечники бронебойных снарядов (из порошков карбидов тяжелых металлов) и многое другое.


В состав спеченных материалов (их называют псевдосплавами) можно включать неметаллические компоненты - графит, глинозем, карбиды, бориды, придающие им особые свойства. Получить обычные (литые) сплавы с такими свойствами невозможно. По такой технологии получают детали из ферритов, альсиферов и других материалов.


В последнее время все шире порошковая металлургия применяется для получения деталей из обычных конструкционных материалов (стали, чугуны, цветные сплавы и т.п.). Это объясняется тем, что этой технологии свойственны исключительно малые отходы. Так, при изготовлении сложных изделий по обычной технологии (ковка) коэффициент использования металла не превышает 0,3–0,4, а по методу порошковой металлургии - он будет близок к 0,95.

Технологии получения порошковых быстрорежущих сталей

Традиционная технология получения быстрорежущих сталей включает в себя выплавку стали и последующую горячую обработку слитков (ковка слитков; обрезка концов заготовки; отжиг заготовки; шлифование заготовки; контроль заготовки; горячая прокатка; обрезка концов проката; отжиг проката; шлифование; контроль заготовки; горячая прокатка; отжиг прутка; правка прутка; контроль заготовок прутка) .


Горячая обработка позволяет уменьшить отрицательные последствия литья - снизить неоднородности распределения карбидов в готовом материале. Высокая вторичная твердость и большие различия физико-механических свойств отдельных фаз в быстрорежущих сталях затрудняют их горячую обработку и приводят к значительным потерям металла (до 50 % от массы литья), поэтому они являются одним из самых дорогостоящих сортов сталей. Известно , что стоимость производства быстрорежущих сталей примерно в 17 раз выше стоимости производства углеродистой стали и примерно в четыре раза выше стоимости производства коррозионно-стойкой хромоникелевой стали (в настоящее время это различие еще увеличилось).


Необходимо отметить, что быстрорежущим сталям, полученным по традиционной технологии, присущ ряд недостатков, сдерживающих дальнейшее развитие этого класса инструментальных материалов. Такими недостатками являются карбидная ликвация в слитке, не устраняемая полностью даже после многократной пластической деформации и значительно снижающая технологическую пластичность заготовок, значительная деформация инструмента при термической обработке, плохая шлифуемость и др. Поэтому совершенствование инструмента из быстрорежущей стали (оптимизация состава материала, технология изготовления и др.) является одним из важных направлений повышения эффективности металлургического и машиностроительного производства в целом.


Производство быстрорежущей стали методами порошковой металлургии позволяет исключить ряд названных выше недостатков и эффективно воздействовать на состав и свойства получаемого материала.


Методы порошковой металлургии включают в себя получение порошка с размером частиц от 40 до 600 мкм посредством распыления жидкого металла потоком газа под давлением 1...1,5 МПа или воды под давлением 3,5...5 МПа и изготовление из него компактных заготовок различными способами горячей пластической деформации . Основные способы получения инструмента из порошков быстрорежущих сталей приведены на рис.


4.2. По технологической схеме 1, в которой обработка давлением не применяется, получают заготовки неперетачиваемых или напайных пластин типа твердосплавных и заготовки фасонного инструмента с минимальными припусками под шлифовку и заточку. По схемам 2..4, в которых используются различные способы горячей пластической деформации, получают соответствующие виды металлургических полуфабрикатов.


Наиболее распространена схема получения изделий из порошковой быстрорежущей стали, получившая название Asea-Stora процесса . В этом случае распыленные газом порошки компактируют горячим изостатическим прессованием при давлении 100...200 МПа и температуре 1000...1200 0С. Перед горячим прессованием возможно использование холодного изостатического прессования с усилием около 0,4 МПа, хотя получаемые таким образом прессовки имеют почти 100 %-ю плотность, их микроструктура несколько неоднородна - попадаются частицы



Рис. 2 Схемы (1...4) получения инструмента из порошков быстрорежущих сталей


с недостаточно раздробленной карбидной сеткой. Последующая горячая пластическая деформация прессовок (ковка или прокатка) с суммарной степенью деформации около 50 % увеличивает однородность микроструктуры и обеспечивает повышение механических свойств получаемой стали.


Отечественными и зарубежными исследованиями установлено, что методы порошковой металлургии позволяют получать быстрорежущие стали с однородной мелкодисперсной структурой и высокими механическими свойствами. Порошковая быстрорежущая сталь по сравнению с быстрорежущей сталью традиционного металлургического производства обладает следующими преимуществами:


обеспечивает более высокую стойкость режущего инструмента (в 1,5...2 раза); изотропностью свойств и повышенной конструктивной прочностью; более высоким уровнем технологических свойств (повышенной технологической пластичностью, незначительной склонностью к росту зерна и деформации при закалке, хорошей шлифуемостью, пониженной склонностью к скалыванию и микровыкрашиванию режущей кромки инструмента).

Порошковая металлургия быстрорежущей стали в нашей стране развивается по двум основным направлениям:


производство безвольфрамовых молибденовых сталей М6Ф1-МП, М6Ф1К8-МП, М6ФЗ-МП, М6Ф2-МП или маловольфрамовых сталей типа 10Р2М9Ф2-МП, 11Р2М9К8-МП и др.;


производство высоколегированных вольфрамомолибденовых сталей Р6М5ФЗ-МП, Р6М5К5-МП, Р6М5ФЗК8-МП, 10Р6М5-МП, Р12МЗФ2К8-МП, в том числе и так называемых сверхбыстрорежущих сталей типа Р8М6Ф8К7-МП и др.


Развитие производства по второму направлению требует большего расхода вольфрама, и других легирующих элементов, но зато при этом увеличивается количество карбидной фазы стали, возрастают вторичная твердость (до НЕД, 70), красностойкость и износостойкость (в 1,5...3 раза) режущего инструмента. Экономия легирующих элементов в этом случае достигается при механической обработке металлов за счет повышения стойкости инструмента .


Рассмотрим несколько подробнее технологию получения порошковой быстрорежущей стали 10Р6М5-МП. Она включает в себя следующие основные операции: выплавку, получение порошка посредством распыления жидкого металла азотом, горячую экструзию порошка в капсулах и последующую термическую обработку заготовок (отжиг) с целью снижения твердости стали и улучшения обрабатываемости ее резанием (рис. 3). Выплавка производится в открытой индукционной печи под слоем шлака. Расход азота при распылении 1 кг жидкого металла составляет 0,6...1,0 м, а скорость охлаждения стали при распылении – 10...105°С/с. Размер гранул порошка после распыления изменяется от 40 до 630 мкм, основу же его составляет, фракция с размером гранул от 60 до 315 мкм. Гистограмма частот распределения размеров гранул порошка стали 10Р6М5 МП представлена на рис. 4. Для получения компактного металла капсулы с порошком подвергаются горячей, экструзии при температуре 1100...1140 °С со степенью их деформации 88% на прессе с усилием 63 МН. Время нагрева капсул с порошком до температуры экструзии составляет 15 ч, время выдержки - 8 ч.


Рис. 3



Рис. 4 Гистограмма частот распределения Н размеров гранул порошка µ стали 10Р6М5-МП после распыления


В качестве смазывающего материала при экструзии используется стекло №185 фракции 0,1 мм. Горячая экструзия - один из перспективных и высокопроизводительных методов получения компактного материала из порошка, в котором совмещаются операции спекания, уплотнения и деформации. Плотность заготовок, полученных из порошка стали 10Р6М5-МП, определяемая на автопикнометре 1320 фирмы «Культроникс» (Франция), близка к теоретической и составляет (7,992...8,034) 40 кг/м. Плотность заготовок из стали Р6М5 составляет (8,031...8,045) 40 кг/м. Для снятия внутренних напряжений после экструзии и подготовки структуры стали 10Р6М5-МП к последующим механической и термической обработкам ее подвергают отжигу (нагрев до 860 °С, выдержка 2 ч, охлаждение с печью до 760 °С, выдержка 6 ч и дальнейшее охлаждение с печью).


В настоящее время разработана порошковая безвольфрамовая быстрорежущая сталь Р0М2ФЗ-МП, получаемая из распыленного азотом порошка. Компактные заготовки из нее изготавливают методом горячего газостатического прессования или методом горячей экструзии. По сравнению со сталью Р6М5 сталь Р0М2ФЗ-МП имеет более высокие технологические свойства: горячую пластичность и шлифуемость, при практически таких же режущей способности и теплостойкости. Данная сталь предназначена для изготовления различных видов режущего инструмента нормальной производительности. Ее применение вместо стандартной быстрорежущей стали Р6М5 позволяет сэкономить до 60 кг вольфрама и 20...30 кг молибдена с каждой тонны стали.


Широко развивается порошковая металлургия быстрорежущих сталей за рубежом. Японской фирмой «Дайдо токусюко» производятся порошковые быстрорежущие стали серии DEX:


DEX20 (1,3С - 4,0Сг - 5,0Мо - 6,5W - 3V); DEX40 (1,3С - 4,0Сг - 5,0Мо 6,5W - 3V - 8,0Со); DEX60 (1,7С - 4,0Сг - 2,0Мо - 15,0W - 5,0V - 8,0Со); DEX80 (2,1С - 4,0Сг - 6,0Мо - 14,0W - 5,5V - 12,0Со).


Стали DEX20 и DEX40, используемые для изготовления матриц, пуансонов, зачистных и вырубных штампов, имеют высокий предел прочности при изгибе и твердость HRC3 60...68.


Стали DEX60 и DEX80 имеют твердость, близкую, к твердости твердых сплавов (до НВСЭ 71), чего невозможно достичь при изготовлении инструментальных сталей традиционным способом. Используются они для изготовления быстрорежущего инструмента.


Фирмами «Asea» и «Stora Kopparberg» Швеция) производятся порошковые быстрорежущие стали типа ASP, например:


ASP30 (1,27С - 4,2Сг - 5,0Мо - 6,4W - 3,1V - 8,5Со);


ASP60 (2,3С - 4,0Сг - 7,0Мо - 6,5W - 6,5V - 10,5Со).


Эти стали применяются для изготовления многолезвийного и деформирующего инструмента, в котором красностойкость является определяющим свойством.


Интенсивно развивается производство порошковых быстрорежущих сталей и в США, Великобритании, ЮАР, Индии, Египте.


Получение заготовок из порошковых быстрорежущих сталей позволяет поднять коэффициент использования металла за счет полной или частичной ликвидации механической обработки, внедрения автоматизированных процессов прессования и спекания и увеличения срока службы изготовленного инструмента за счет получения более дисперсной и однородной гетерофазной структуры стали и снижения балла ее карбидной неоднородности.

Технология получения и применение порошковой проволоки для производства качественных сталей

Среди металлоизделий промышленного назначения порошковая проволока (ПП) занимает особое место как по высоким темпам роста объёмов производства, так и по используемым сырьевым материалам и оборудованию.


В Западной Европе и Японии технология обработки жидкой стали так называемой порошковой проволокой появилась в 1980-81 гг. В нашей стране начало работ по производству отечественной ПП для внепечной обработки черных сплавов можно отнести к 1988 г., когда было принято соответствующее решение в Минчермет СССР. В 1989 г. ЦНИИчермет и МГТУ им. Баумана разработали первый опытный комплекс оборудования для производства металлургической ПП. В 1990 г. НПО "Тулачермет" совместно с ПО "Тульский патронный завод" начали работы по созданию первых образцов отечественных трайбаппаратов и оборудования изготовления ПП. В 1990-91 гг. начались работы в этом направлении и на Чепецком механическом заводе в г. Глазове.


В 2004 года Научно-производственным предприятием «Вулкан-ТМ» (г. Тула) начато производство линий по производству порошковой проволоки и трайб-аппаратов. В настоящее время НПП «Вулкан-ТМ» осуществляет комплектую поставку линий производства порошковой проволоки и трайбаппаратов в составе технологического комплекса внепечной обработки и разливки стали и сплавов (Приложение). Выпускаемое оборудование не уступает по качеству импортным аналогам и имеет существенные преимущества.


Конструктивно порошковая проволока (англ. - "cored wire" - "проволока с сердечником") состоит из протяжённой металлической оболочки, заполненной порошкообразным реагентом.


Подачу проволоки в ковш осуществляют с помощью специальной машины трайб-аппарата (англ. "cored wire injector"), позволяющей регулировать в широких пределах скорость и количество вводимых материалов в зависимости от массы металла и глубины ковша. В ковше оболочка проволоки расплавляется и подаваемое вещество попадает непосредственно в жидкий металл.


Способ внепечной обработки стали посредством порошковых реагентов в металлической оболочке протяжённой длины имеет ряд неоспоримых преимуществ, таких как:


небольшие капитальные вложения и производственные затраты, простота и надежность конструкций машин, совместимость с существующими в металлургических цехах технологическими процессами;

высокое и стабильное усвоение вводимых добавок, небольшой расход материалов и точное регулирование заданного химического состава готового металла;


отсутствие контакта и взаимодействия вводимых добавок с кислородом и влагой воздуха и со шлаком;


небольшая продолжительность операции, отсутствие чрезмерного барботажа, охлаждения и захвата газов металлом;


минимальные трудозатраты обслуживающей рабочей бригады, соблюдение жестких требований техники безопасности и промышленной санитарии, взрывобезопасность, отсутствие пылеи газовыделений, простота управления, механизация и автоматизация технологической операции;


удобство транспортировки и хранения ПП, простота подготовки к вводу в металл присаживаемых материалов;


возможность использования, в том числе, с предварительным хранением и транспортировкой гидрофильных, легковоспламеняющихся и ядовитых реагентов;


повышение производительности плавильных агрегатов, упрощение и сокращение последующего технологического процесса производства деформированных и литых заготовок;


повышение и стабилизация на высоком уровне качественных характеристик, состава и свойств металла, сокращение брака, достижение определенного экономического эффекта.


Порошковыми проволоками доводятся до требуемого химсостава такие марки сталей, как: Ст3, 10, 20, 40, 45, 30Х, 35Х, 40Х, 45Г, 48А, Р6М5, 09Г2С, 09Г2Д, 09Г2ФВ, 15ХГМНТ, 16Д, 17Г2АФ, 17Г1С, 18Г, 18ХГТ, 20ЮЧ, 22ГЮ,


23Х2Г2Т, К-74, а также Grade45, Grade50, Grade55 (по стандарту США АСТМ А 607-92а) и др.


Кроме внепечной обработки металлов и сплавов, порошковая проволока малых диаметров получила распространение в сварочном производстве начиная с 50-х гг. XX в.

Конструкции и технологии изготовления порошковой проволоки

Конструкции


Порошковая проволока это порошковый реагент в металлической оболочке протяжённой длины.

ПП состоит, как правило, их двух основных частей: порошкового наполнителя (сердечника) и тонкостенной металлической оболочки.


В качестве сердечника ПП используют разнообразные сыпучие материалы, применяемые в металлургическом и сварочном производстве, к которым предъявляется единственное требование с точки зрения технологии производства способность к помолу до фракции не более 3÷4 мм.


В настоящее время имеются сведения о промышленном использовании в металлургии примерно девятнадцати химических элементов в виде порошковых проволок, при этом различают около сорока вариантов наполнителей.


Металлическая оболочка выполняет несколько важных функций: защищает порошкообразные реагенты от воздействия атмосферы и влаги во время хранения и транспортировки; предохраняет от окисления при прохождении через слои шлака на поверхности металла; обеспечивает соответствующую жесткость проволоки, необходимую для пробивания шлакового слоя; задерживает непосредственный контакт реагентов с жидкой сталью, что позволяет путем изменения скорости введения проволоки и толщины оболочки, регулировать глубину погружения присаживаемых добавок.


В качестве металлической оболочки используют стальную холоднокатаную ленту из сталей марок 08кп, 08пс, 08Ю по ГОСТ 503. Толщина ленты в металлургической ПП 0,3÷0,5 мм, в сварочной ПП 0,15÷1,5 мм.


На сегодняшний день разработано множество конструкций металлургической ПП. Рассмотрим некоторые из них (см. рис. 5).


На рис. 5а изображена "классическая" конструкция ПП с фальцевым замковым (ФЗ) соединением краёв оболочки 2. Данная конструкция является наиболее распространённой и простой в изготовлении, производится многими предприятиями, кроме того, она является базовой для остальных конструкций. В качестве замка применён одинарный лежачий фальц 4, утопленный во внутрь проволоки. К недостаткам данного замка следует отнести наличие только одного стопорящего порожка 5 и то, что внутренняя петля фальца 3 не полностью обжимается в процессе прокатки проволоки, так как силовое воздействие инструмента (ролика) происходит только с одной стороны замка. Данные недостатки в случае неплотного заполнения порошком 1 и малой ширины фальца приводят к раскрытию замка вследствие больших скручивающих деформаций в процессе размотки проволоки из бунта трайб-аппаратом.


Для предотвращения раскрытия фальцевого замка, его иногда делают выпуклым с двумя стопорящими порожками 5. Подобный вариант ПП изготавливается на "Чепецком механическом заводе" (рис. 5 в), а также подобная конструкция замка применена в ПП по патенту фирмы "Affival" (рис. 5и).


Рис. 5


Для повышения плотности укладки порошкового наполнителя на металлической оболочке проволоки иногда делают продольное углубление-гофр 6 так называемый уплотняющий "зиг" (рис. 5б). Зиг прокатывается после того, как будет закрыт замок на оболочке, но перед калибровкой проволоки; металл зига внедряется в порошковый сердечник и уплотняет его. В известных конструкциях зиг может располагаться диаметрально противоположно замку, под углом 90° к нему, рядом с замком. Как правило, бывает от одного до двух зигов. Недостатками данной конструкции являются: во-первых, повышенная металлоёмкость проволоки при прочих равных условиях; во-вторых, в процессе намотки проволоки на катушку и при размотке из бунта происходит раскрытие зига и, тем самым, ослабляется замок, что может привести к высыпанию наполнителя из проволоки.


Украинская фирма "КОИН" совместно с "ИЭС им. Патона" разработала конструкцию ПП, в которой происходит образование дополнительного гофра 7, прилегающего к замку по всей его длине и придающего проволоке дополнительную жёсткость (рис. 5 г). По мнению авторов, это препятствует раскрытию замка и просыпанию порошка во время размотки ПП из бунтов. Данная схема является одной из самых надёжных.


Следующую конструкцию ПП (рис. 5д) отличает стоячий фальц 4, утопленный по радиусу внутрь трубчатой оболочки, и сомкнутые гофры 7, зажимающие его между собой, образующие таким образом замкнутое соединение в виде усиленного ребра. Ребро увеличивает продольную жёсткость готовой ПП, повышая тем самым проникающую способность профиля при введении в жидкий металл. Данная конструкция позволяет изготавливать несколько смежных размеров проволоки из ленты одной ширины путём регулирования величины утапливания стоячего фальца внутрь трубчатой оболочки. На взгляд авторов, утопленное внутрь трубчатой оболочки замковое соединение и отсутствие открытого продольного гофра на готовой ПП стабилизирует подачу проволоки трайб-аппаратом в ковш. Данной конструкции присущ тот недостаток, что невозможно плотно обжать утопленный внутрь замок, а, значит, он будет ненадёжным и может произойти его раскрытие.


Другую конструкцию ПП (рис. 5e) отличает то, что трубчатая оболочка формируется с перекрытием продольных кромок оболочки внахлёст, при формировании дополнительного внутреннего гофра 7 внешнюю часть оболочки в зоне нахлёста прижимают к стороне гофра и подвергают заготовку обработке до смыкания сторон дополнительного гофра и зажатия между ними участка оболочки с зоной нахлёста. При этом образуется замковое соединение в виде стоячего фальца 4, утопленного внутрь оболочки. По мнению авторов, данная ПП, благодаря большой жёсткости, обладает повышенной проникающей способностью при введении её в жидкий металл и лучше противостоит скручивающим деформациям, возникающим при статической размотке проволоки трайб-аппаратом. Этой конструкции ПП присущ тот же самый недостаток, а именно то, что невозможно плотно обжать утопленный внутрь замок, следовательно, он будет ненадёжным и может произойти его раскрытие.


На рис. 5 ж показано сечение ПП, очень похожей на предыдущий вариант. В данной конструкции заполненную порошком оболочку обжимают до соединения кромок внахлёст, а внутренний гофр формируется в месте соединения кромок путём обжатия оболочки до соприкосновения боковых стенок полученного гофра. В этом состоит сходство с ранее рассмотренной ПП. Отличие заключается в том, что воздействие ролика, формирующего гофр, осуществляется примерно посередине зоны нахлёста боковых кромок, в то время, как по предыдущему варианту ролик воздействует на зону нахлёста по краю наружной кромки. Авторы этой ПП имели целью решить задачу получения качественного замкового соединения и исключения при этом самостоятельной операции по уплотнению порошкового наполнителя, так как она совмещается с операцией формирования замкового соединения. Данной ПП присущи все ранее рассмотренные недостатки.


Голландская фирма "Hoogovens groep" предложила оригинальную конструкцию порошкового наполнителя в металлической оболочке протяжённой длины, которую отличает нижеследующее (рис. 5 з): края заполненного порошком металлического желоба соединяются внахлёст и полученная трубчатая конструкция подвергается дальнейшей прокатке, в результате которой образуется спиралевидная оболочка, содержащая как минимум два слоя. Далее заготовка пропускается через индуктор, в котором нагревается до 650÷750 °С, после чего подаётся в редуцирующие ролики (расположенные под углом 120° друг к другу), в которых происходит волочение проволоки и одновременное сваривание слоев спиралевидной металлической оболочки между собой. Таким образом, образуется герметичная оболочка, предохраняющая порошковый наполнитель от воздействия внешних факторов. По заявлению авторов, полученная продукция может быть использована как металлургическая ПП, а также как заготовка для производства сварочной ПП.


Фирма "Affival" (бывшая "Vallourec Solesmes") разработала двухслойную ПП (см. рис. 5 и). Её отличает то, что внутри металлической оболочки коаксиально располагаются по крайней мере два различных порошковых сердечника. При этом внутренний сердечник отделён от внешнего промежуточной металлической оболочкой, сделанной из того же или другого металла, что и внешняя оболочка. Применение двухслойной ПП позволяет заменить ввод в расплав двух обычных ПП с разными наполнителями.


Первоначально проволока "Affival" была разработана с прямоугольным сечением, в ней фальцевый замок с двумя стопорящими порожками смещён от центра широкой грани к одному из рёбер. Прямоугольная форма сечения ПП предназначена прежде всего для повышения коэффициента заполнения оболочки наполнителем, а также способствует увеличению плотности укладки проволоки при её намотке на катушку. Однако такую проволоку можно применять только в режиме динамической размотки трайб-аппаратом (т.е. размотка с вращающейся катушки), так как в случае стационарной размотки (из неподвижного бунта) происходят значительные крутильные деформации, ведущие к раскрытию металлической оболочки.


Конструкции сварочной ПП весьма разнообразны; наиболее часто встречающиеся из них показаны на рис. 6 . Наибольшее распространение получила трубчатая ПП (рис. 6 а), составляющая 70÷80% от общего выпускаемого объёма. Сложные конструкции ПП (рис. 6 г – 6 м) разработаны для более равномерного плавления проволоки по её сечению (оболочки и наполнителя) и улучшения расплавленного металла при сварке. В них металлическая лента (а также дополнительно введённая сплошная проволока) равномерно распределена по сечению ПП, тем самым увеличена доля присадочного металла внутри сечения, что приближает строение ПП к строению электрода, у которого покрытие расположено вокруг стержня.



Рис. 6. а - трубчатая; б - трубчатая с перекрытием; в - трубчатая бесшовная; г - с одной загнутой кромкой; д - с двумя загнутыми кромками; е усложнённая; ж -двухслойная; з - комбинированная с металлическим сердечником; и - четырёхзагибная; к - сложнозагибная; л - сложнозагибная; м комбинированная с тремя металлическими проволоками внутри


Применение трубчатой ПП с перекрытием и бесшовной (рис. 6 б и 6в) исключает высыпание порошкового наполнителя через продольный шов, а бесшовная ПП к тому же позволяет выполнять подводную сварку и применять при её изготовлении омеднение поверхности.


Двухслойная ПП (рис. 6 ж), выполненная с перекрытием, имеет наружный слой порошка из шлакообразующих компонентов, а внутренний из легирующих элементов и железного порошка. Это обеспечивает высокие сварочно-технологические свойства проволоки, надёжную защиту зоны дуги и расплавленного металла от воздействия атмосферного воздуха и даёт возможность получать металл сварного шва высокого качества, сохраняющий пластичность при отрицательных температурах.


Сварочная ПП рассмотренных конструкций изготавливается с конечной операцией волочения.


Технологии изготовления


В настоящее время в промышленном производстве применяется множество вариантов технологических процессов изготовления ПП, осуществляемых на комплексах ОПП (рис. 7). Техпроцессы различаются в основном числом переходов и способом формообразования металлической оболочки . Рассмотрим один из них на примере "классической" ПП.



Рис. 7. : 1 установка размотки штрипсов; 2 установка резки и сварки штрипсов; 3 -узел загрузки наполнителя; 4 прокатно-формовочный агрегат; 5 -укладчик витков проволоки; 6-установка намотки проволоки


Формообразование ПП происходит за несколько технологических переходов (рис. 8). В начале (а) из исходной плоской ленты (штрипса) формируется V-образный жёлоб с наклонёнными под углом 45° боковыми стенками, при этом одновременно образуются элементы (полочки) фальцевого замка (б). Далее из V-образного жёлоба профилируется U-образный жёлоб с вертикальными стенками (в). Эти два перехода осуществляются в блоке предварительной формовки, формообразующим инструментом являются прокатные ролики (валки).


На следующем этапе (г) в U-образный жёлоб засыпается порошковый наполнитель. Засыпка порошка осуществляется в узле загрузки. Инструментом является рабочий орган механизма загрузки (питателя), а также другие элементы, осуществляющие вспомогательные действия (отсечка уровня порошка, разравнивание и уплотнение наполнителя, протирание полочек замка от пыли и т.п.).


Рис. 8.


Заполненный порошком U-образный жёлоб поступает в блок окончательной формовки, в котором выполняются следующие технологические переходы: сближение краёв U-образного жёлоба (д); сближение (выпрямление) полочек ФЗ (е); предварительная завалка полочки ФЗ (ж); окончательная завалка полочки ФЗ (з); боковое обжатие вертикального фальца (и); предварительная завалка фальца (к); окончательная завалка фальца (л); калибровка проволоки (м). Инструментом, осуществляющим эти действия, как правило, являются прокатные ролики (валки) либо неподвижные матрицы-проводки.


На завершающей стадии формообразования ПП происходит многопроходная калибровка проволоки (н-п), за счёт которой достигается: уплотнение порошкового сердечника, плотное обжатие ФЗ, а также придание правильной (требуемой) геометрической формы поперечного сечения ПП и регламентируемых размеров. Калибровка проволоки происходит в тянуще-калибрующем устройстве, которое представляет собой совокупность прокатных клетей либо волочильных барабанов. Формообразующим инструментом служат прокатные ролики (валки) либо матрицы-волоки.


Далее проволока проходит через счётно-контрольное устройство, регистрирующее метраж изготовленной ПП. Затем ПП наматывается на катушку, при этом витки проволоки раскладываются с равномерным шагом посредством укладчика.