Строительный портал - Винтажная Москва
Поиск по сайту

Поверхностный слой жидкости. Свободная поверхностная энергия Смачивание и несмачивание


Рис. 9.3. Действие межмолекулярных сил в объеме и на поверхности

Равнодействующая всех этих сил равна 0. Молекула, находящаяся на поверхности, испытывает притяжение только внутренних молекул (газ из-за своей разряженности взаимодействует слабо), равнодействующая этих сил направлена внутрь тела, т.е. явно выражено стремление к втягиванию поверхностных молекул внутрь тела, поверхность тела как бы находится в натянутом состоянии и стремится к своему сокращению. Поскольку действие сил на поверхностные молекулы не скомпенсировано, такие молекулы обладают свободной поверхностной энергией. Дадим определение.

Свободная поверхностная энергия – это избыток энергии молекул поверхностного слоя по сравнению с молекулами, находящимися внутри DE = E* – E ср.

Эта энергия зависит от природы вещества соприкасающихся фаз, от температуры и площади раздела фаз.

S – площадь раздела фаз, м 2 ;

s – коэффициент пропорциональности, называемый коэффициентом поверхностного натяжения (или просто поверхностное натяжение), Дж/м 2 .

Как известно, любая система стремится к минимуму энергии. Чтобы уменьшить свободную поверхностную энергию (F s = sS) у системы есть два пути: уменьшить поверхностное натяжение s или

площадь поверхности раздела фаз S .

Уменьшение s происходит при адсорбции веществ на твердых и жидких поверхностях (это является движущей силой адсорбции), при растекании одной жидкости по другой.

Стремление к уменьшению площади поверхности S приводит к слиянию частиц дисперсной фазы, к их укрупнению (при этом удельная поверхность сокращается), т.е. в этом кроется причина термодинамической неустойчивости дисперсных систем.

Стремление жидкости к уменьшению поверхности приводит к тому, что она стремится принять форму шара. Математические расчеты показывают, что наименьшую площадь при постоянном объеме имеет шар, поэтому частицы жидкости принимают шарообразную форму, если только эти капли не расплющиваются под действием силы тяжести. Капли ртути на поверхности приобретают форму шариков. Сферическую форму планет также приписывают действию поверхностных сил.

Поверхностное натяжение

Физический смысл коэффициента поверхностного натяжения (s) можно истолковать с разных точек зрения.

1.Свободная поверхностная энергия (удельная поверхностная энергия)

Из выражения 9.3. следует

[Дж/м 2 ], (9.4)

где F s – свободная поверхностная энергия, Дж;

Отсюда следует физический смысл s – это свободная поверхностная энергия молекул поверхностного слоя на площади 1 м 2 (или на другой единичной площади), т.е. удельная поверхностная энергия.

Чем больше коэффициент s, тем больше величина поверхностной энергии (см. табл. 9.1.).

2. Работа по созданию новой поверхности

Поскольку энергия – это мера работоспособности, то, заменяя F s на W, получаем:

[Дж/м 2 ], (9.5)

где W – работа по созданию новой поверхности раздела фаз, Дж;

S – площадь поверхности раздела фаз, м 2 .

Из выражения 9.5 следует, что s – это работа, которую надо совершить, чтобы в изотермических условиях увеличить на единицу площадь поверхности раздела фаз при неизменном объеме жидкости (т.е. перенести соответствующее число молекул жидкости из объема в поверхностный слой).

Например, при разбрызгивании жидкости совершается работа, которая переходит в свободную поверхностную энергию (при разбрыз-гивании поверхность раздела фаз многократно увеличивается). Такая же работа затрачивается при дроблении твердых тел.

Так как поверхностное натяжение связано с работой, расходуемой на разрыв межмолекулярных связей при переводе молекул из объема в поверхностный слой, то очевидно, что поверхностное натяжение является мерилом сил межмолекулярного взаимодействия внутри жидкости. Чем полярнее жидкость, тем сильнее взаимодействие между молекулами, тем сильнее поверхностные молекулы втягиваются внутрь, тем выше значение s.

Из жидкостей наибольшее значение s у воды (см. табл. 9.1.). Это неслучайно, поскольку между молекулами воды образуются достаточно прочные водородные связи. В неполярных углеводородах между молекулами существуют только слабые дисперсионные взаимодействия, поэтому поверхностное натяжение у них небольшое. Еще больше значение s у жидкой ртути. Это свидетельствует о значительном межатомном взаимодействии (и о большой величине свободной поверхностной энергии).

Высоким значением s характеризуются твердые тела.

Поверхностная сила

Есть также силовое толкование поверхностного натяжения. Исходя из размерности коэффициента поверхностного натяжения Дж/м 2 , можно записать

Таким образом, поверхностное натяжение – это поверхностная сила, приложенная к единице длины контура, ограничивающего поверхность и направленная на сокращение поверхности раздела фаз .

Существование этой силы наглядно иллюстрируется опытом Дюпре. На жесткой проволочной рамке закреплена подвижная перемычка (рис. 9.2). В рамке натянута мыльная пленка (положение 1). Чтобы растянуть эту пленку до положения 2, надо приложить силу F 1 , которой противодействует сила поверхностного натяжения F 2 . Эта сила направлена вдоль поверхности (по касательной), перпендикулярно к контуру, ограничивающему поверхность. Для пленки на рис. 9.2 роль части контура играет подвижная перемычка.


Рис. 9.3. Действие сил поверхностного натяжения

Таким образом, силы поверхностного натяжения обладают следующими свойствами:

1) равномерно распределены по линии раздела фаз;

Поверхностное натяжение возникает на всех поверхностях раздела фаз. В соответствии с агрегатным состоянием этих фаз введены следующие обозначения:

s Ж-Г (на границе жидкость – газ)

s Ж1-Ж2 (на границе двух несмешивающихся жидкостей)

s Т-Г (на границе твердое тело – газ)

s Т-Ж (на границе твердое тело – жидкость)

Значения коэффициентов поверхностного натяжения некоторых веществ на границе с воздухом и на некоторых межжидкостных границах приведены в табл. 9.3.

Непосредственно экспериментально можно определить поверхност-ное натяжение на границе жидкость – газ и жидкость – жидкость. Методы определения поверхностного натяжения на границе с твердым телом основаны на косвенных измерениях.

Методы определения поверхностного натяжения делятся на три группы: статические, полустатические и динамические.

Статическими методами определяется поверхностное натяжение практически неподвижных поверхностей, образованных задолго до начала измерений и поэтому находящихся в равновесии с объемом жидкости. К этим методам относятся метод капиллярного поднятия и метод лежащей или висящей капли (пузырька).

Динамические методы основаны на том, что некоторые виды механических воздействий на жидкость сопровождаются периодическими растяжениями и сжатиями ее поверхности, на которые влияет поверхностное натяжение. Этими методами определяется неравновесное значение s. К динамическим методам относятся методы капиллярных волн и колеблющейся струи.

Полустатическими называются методы определения поверхностного натяжения границы раздела фаз, возникающей и периодически обновляемой в процессе измерения (метод максимального давления пузырька и сталагмометрический метод), а также методы отрыва кольца и втягивания пластины. Эти методы позволяют определить равновесное значение поверхностного натяжения, если измерения проводятся в таких условиях, что время в течение которого происходит формирование поверхности раздела, значительно больше времени установления равновесия в системе.

Таблица 9.3

Поверхностное натяжение (удельная поверхностная энергия)

некоторых веществ на границе с воздухом (298 К)

Вещество s, мДж/м 2 Вещество s, мДж/м 2
Жидкость Твердые тела
Гексан 18,4 Лед (270 К)
Октан 21,8 Кварц
Этанол 22,0 MgO
Бензин 25,0 Алюминий
Бензол 28,2 Железо
Уксусная кислота 27,8 Вольфрам
Муравьиная кислота 36,6 Алмаз
Анилин 43,2 Полимеры
Вода 71,95 Политетрафторэтилен 18,5
Ртуть 473,5 Полиэтилон 31,0
Жидкость – жидкость Полистирол 33,0
Бензол – вода 34,4 Поливинилхлорид 40,0
Анилин – вода 4,8 Плексиглас 38,0
Хлороформ – вода 33,8 Эмаль К-2 31,7

Метод капиллярного поднятия

Поднятие жидкости в капилляре (если жидкость хорошо смачивает стенки капилляра) обуславливается поверхностным натяжением. Между поверхностным натяжением и высотой поднятия жидкости в капилляре (рис. 9.4) существует следующая зависимость

, (9.7)

где s – поверхностное натяжение; h – высота поднятия столба жидкости; r 2 и r 1 – плотности жидкости и насыщенного пара; g – ускорение свободного падения; q – краевой угол смачивания; r – радиус капилляра.

Для проведения эксперимента необходимы: капилляр диаметром 0,2-0,3 мм; сосуд, в который заливается исследуемая жидкость; катетометр для измерения высоты поднятия жидкости (точность ± 1 мкм) и устройство для подсветки мениска.

Наибольшие трудности вызывает измерение краевого угла смачивания q. Поэтому этот метод удобнее всего применять для жидкостей, у которых q = 0 0 .



Рис. 9.4. Поднятие жидкости в капилляре

Это условие соблюдается для воды и многих органических жидкостей. Так как cos 0 0 = 1, то выражение (9.7) упрощается и может быть использовано для расчета s. Метод капиллярного поднятия – один из самых точных методов определения поверхностного натяжения.

Наиболее характерным свойством жидкости, отличающим ее от газа, является то, что на границе с газом жидкость образует свободную поверхность, наличие которой приводит к возникновению явлений особого рода, называемых поверхностными. Своим возникновением они обязаны особым физическим условиям, в которых находятся молекулы вблизи свободной поверхности.

На каждую молекулу жидкости действуют силы притяжения со стороны окружающих ее молекул, расположенных от нее на расстоянии порядка м (радиус молекулярного действия). На молекулу , расположенную внутри жидкости (рис. 1), действуют силы со стороны таких же молекул, и равнодействующая этих сил близка к нулю.

Для молекул равнодействующие сил отличны от нуля и направлены внутрь жидкости, перпендикулярно к ее поверхности. Таким образом, все молекулы жидкости, находящиеся в поверхностном слое, втягиваются внутрь жидкости. Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создает давление на жидкость (молекулярное давление ).

Чтобы переместить молекулу , расположенную непосредственно под поверхностным слоем, на поверхность, необходимо совершить работу против сил молекулярного давления. Следовательно, молекулы поверхностного слоя жидкости обладают дополнительной потенциальной энергией по сравнению с молекулами внутри жидкости. Эту энергию называют поверхностной энергией .

Очевидно, что величина поверхностной энергии тем больше, чем больше площадь свободной поверхности.

Пусть площадь свободной поверхности изменилась на , при этом поверхностная энергия изменилась на , где a - коэффициент поверхностного натяжения.

Так как для этого изменения необходимо совершить работу

Единицей коэффициента поверхностного натяжения в СИ является джоуль на квадратный метр .

Коэффициент поверхностного натяжения - величина, численно равная работе, совершенной молекулярными силами при изменении площади свободной поверхности жидкости на единицу при изотермическом процессе.

Так как любая система, предоставленная сама себе, стремится занять такое положение, в котором ее потенциальная энергия наименьшая, то жидкость обнаруживает стремление к сокращению свободной поверхности.

Поверхностный слой жидкости ведет себя подобно растянутой резиновой пленке, т.е. все время стремится сократить площадь своей поверхности до минимальных размеров, возможных при данном объеме.

Пример: капля жидкости в состоянии невесомости имеет сферическую форму.

Почти все физические и химические процессы в природе связаны с взаимодействием между атомами. Величиной межатомных сил определя­ются физико-химические свойства газообразных, жидких и твердых ве­ществ. Процессы смачивания и капиллярного течения жидкостей по поверх­ности твердого или жидкого тела также обусловлены наличием в них внут­ренних и поверхностных силовых полей. Проявление этих сил вызывает взаимодействия между молекулами внутри и на поверхности жидкости. Изо­лированная молекула, находящаяся внутри жидкости на расстоянии радиу­са действия молекулярных сил, притягивает окружающие молекулы и одно­временно находится под воздействием этих молекул. Равнодействующая всех сил равна нулю, в результате молекула внутри жидкости находится в равновесии. При перемещении молекулы к поверхности на расстояние, меньшее радиуса действия молекулярных сил, условие ее равновесия бу­дет другим.

Молекулы жидкости, находящиеся на поверхности ее раздела с газом, испытывают значительно большее притяжение со стороны жидкости, чем со стороны газовой среды, отличающейся малой плотностью. Вследствие это­го возникает направленная внутрь жидкости сила, стремящаяся перемес­тить ее молекулы с поверхности в глубину. Поверхность жидкости ведет себя подобно туго натянутой резиновой пленке. Образуется поверхностный слой, который оказывает давление на жидкость. Толщина этого слоя составляет приблизительно 10 А. Энергия молекул вблизи поверхности раз­дела выше, чем внутри жидкости. Свободная энергия поверхностного слоя направлена во всех точках перпендикулярно к поверхности и стремится со­кратить ее до минимума. Если другие силы не действуют на жидкость, она принимает форму шара, т.е. тела с наименьшей поверхностью при данном объеме.

При решении практических задач сложно оперировать с поверхностной энергией жидкости, поэтому введено более простое понятие о коэффициен­те поверхностного натяжения s, численно равном силе поверхностного на­тяжения, приходящейся на единицу длины ПС жидкости и действующей в направлении, перпендикулярном к этой линии

s = F / L (5.1)

где F - сила поверхностного натяжения, Н; L - длина свобод­ной поверхности жидкости, на которой действует сила поверх­ностного натяжения F, м.

Неравноценность молеку­лярного взаимодействия на гра­нице раздела фаз и втягивания поверхностных молекул внутрь жидкости вызывают появление силы. Эта сила действует тан­генциально, рассчитывается на единицу длины периметра, ог­раничивающего поверхность жидкости, и называется поверх­ностным натяжением.

Поскольку поверхностное натяжение действует тангенциально к по­верхности жидкости, ее поверхностный слой (ПС) всегда будет ровный и гладкий, на нем отсутствуют выступы. Поверхностное натяжение имеет раз­мерность Н/м или дин/см. Для воды оно равно при 20°С 72,75*10 -3 Н/м, или 72,75 мН/м (миллиньютон на метр).

Нескомпенсированность молекулярного взаимодействия, стремление молекул ПС втягиваться во внутрь жидкости, а также вызванное этим по­верхностное натяжение жидкости на границе с другой жидкостью (s жж) или с газовой средой (s жг), стремятся сократить поверхность жидкости до мини­мальных размеров. Наименьшей поверхностью при данном объеме облада­ет сфера. Сферическую поверхность можно наблюдать у относительно ма­лых капель некоторых жидкостей, например, ртути, на стекле, покрытом па­рафином. Это явление используется для получения сферических частиц металлических порошков путем распыления жидкого металла. Для того, чтобы увеличить поверхность жидкости, то из ее объема следует вытяги­вать на поверхность новые частицы, т.е. совершать работу против сил, которые заставляют поверхность жидкости уподобляться пленке и носят на­звание сил поверхностного натяжения. Из этого следует, что уменьшение поверхности жидкости должно сопровождаться и уменьшением свободной энергии, т.е. оно является самопроизвольным процессом. Этим объясняется то, что свободная взвешенная в воздухе жидкость стремится принять форму шарообразных капель, т.к. шар при заданном объеме имеет наименьшую величину поверхности. По этой же причине мелкие капли жидкости при со­прикосновении сливаются в более крупные - при одинаковом объеме по­верхность крупной капли меньше, чем нескольких мелких. Значение по­верхностной энергии жидкости и изменение под действием ее формы капли зависит от природы взаимодействующих веществ, соприкасающихся на гра­нице раздела фаз. Чем ближе по величине значения их поверхностной энергии, тем меньше результирующая межфазная поверхностная энергия.

Поверхностное натяжение может проявляться как сила.

Как видно, величину s жг можно рассматривать как энергию, отнесенную к единице поверхности (площади), и как силу, отнесенную к единице длины периметра поверхности. С точки зрения размерностей это одно и то же. Действительно,

s = E / S = m l 2 t -2 / l 2 = m l t -2 / l = F / l (5.2)

Здесь E - энергия; S - площадь; m - размерность массы; l - размер­ность длины; t - размерность времени.

Таким образом, размерность удельной свободной поверхностной энер­гии - Дж/м 2 , а размерность поверхностного натяжения - Н/м. Для однокомпонентной жидкости, например воды, численные значения поверхностного натяжения и удельной свободной поверхностной энергии равны между со­бой. У жидкостей, в состав которых входит несколько веществ, подобное совпадение отсутствует. Различие между поверхностным натяжением и удельной свободной поверхностной энергией незначительно, и в большин­стве случаев эти понятия отождествляют. Иногда для подчеркивания энер­гетического аспекта в образовании новой поверхности размерность поверх­ностного натяжения дают в мДж/м 2 .

Необходимо заметить, что удельная свободная поверхностная энергия не является особой формой энергии, а представляет тот избыток энергии в расчете на единицу поверхности, которым обладают молекулы на поверх­ности в связи с их положением. Помимо удельной различают свободную поверхностную энергию. Если термин "удельная" относится к единице пло­щади поверхности, то термин "свободная" - ко всей поверхности. При этом слово "поверхностная" обычно опускают, подразумевая, что свободная энергия относится к поверхности раздела фаз.

Поверхностное натяжение можно также выразить как работу, которую необходимо затратить, чтобы увеличить поверхность жидкости на 1 единицу поверхности. Величина поверхностного натяжения жидкости зависит от при­роды среды, с которой она граничит. Поверхностное натяжение часто отно­сят к границе с воздухом и обозначают s.

Поверхностное натяжение является вектором, модуль которого имеет размерность Н/м. Поверхностная же энергия является величиной скалярной и выражает работу, необходимую для образования новой поверхности. В отношении жидкости понятия поверхностного натяжения и поверхностной энергии в количественном смысле равны.

Поверхностное натяжение, или, в общем случае, межфазное натяже­ние обусловлено тем, что частицы жидкости испытывают преимуществен­ное притяжение одной из фаз. В рассмотренном взаимодействии молекул основное влияние на ПС оказывает сама жидкость, в то время как вторая фаза, в данном случае газовая атмосфера, оказывает на ПС незначитель­ное влияние. Чем резче выражена эта ассиметрия силовых полей, тем больше величина поверхностного натяжения. В тех случаях, когда различие в силовых полях проявляется в меньшей степени, поверхностное натяжение имеет низкие значения. В растворах частицы с сильными силовыми полями вытесняют на поверхность частицы с более слабыми силовыми полями. Повышение концентрации их в ПС вызывает снижение поверхностного на­тяжения. Если отдельные компоненты взаимодействующих систем, напри­мер, легирующие элементы в сплавах, имеют силовое поле, близкое по зна­чению силовому полю основы сплава, то эти компоненты практически рас­пределены равномерно и представляют собой растворы, свойства которых близки к идеальным.

Для однокомпонентных систем коэффициент поверхностного натяже­ния на границе твердое тело - вакуум имеет максимальное значение, на границе жидкость - насыщенный пар - более низкое значение, на границе твердое тело - жидкость коэффициент поверхностного натяжения имеет наименьшее значение.

Растекание жидкости и смачивание ими поверхности твердого тела со­провождается увеличением поверхности, связанным с преодолением сил поверхностного натяжения.

Интенсивность процесса смачивания поверхности металлов приблизи­тельно можно оценить количеством выделяемой при этом энергии.

Смачивание оказывает существенное влияние на процессы сцепления между двумя металлами, один из которых находится в твердой, а другой в жидкой фазе. Это является отличительным признаком пайки, однако и в условиях сварки оказывает большое влияние на качество сварных соедине­ний. Так, от смачиваемости металла расплавом зависит форма шва, а, сле­довательно, и вибропрочность сварных соединений. Нежелательным явле­нием служит сцепление жидких капель с основным металлом - налипание брызг. Это явление особенно часто наблюдается при сварке в углекислом газе, порошковой проволокой без флюса, при ручной дуговой сварке. Ре­шающую роль играет сцепление между жидким расплавом и твердым ме­таллом в процессах, занимающих промежуточное положение между сваркой и пайкой - омеднении, алитировании и др. Необходимым условием установления металлической связи между атомами твердого и жидкого металла является сближение атомов, которое достигается при смачивании твердого тела жидким. С энергетической точки зрения самопроизвольно такое смачи­вание будет происходить только в том случае, если работа сил притяжения между жидкостью и твердым металлом (работа адгезии) будет равна или больше работы сил притяжения частиц жидкости друг к другу (работа когезии).

Смачивание зависит от химического сродства между контактирующими металлами, и в первую очередь, от их взаимной растворимости. Металлы, образующие взаимные растворы или химические соединения и имеющие общие фазы на диаграмме состояний, обычно обладают хорошей взаимной смачиваемостью. Как правило, металлы хорошо смачиваются собственным расплавом. Нерастворимые друг в друге металлы чаще всего обладают пло­хой взаимной смачиваемостью (Fe - Pb, Al - Pb, Cu - Pb). Смачивание улучшается также при меньшей разнице температур плавления.

Тема: «Характеристика жидкого состояния вещества»

Характеристика жидкого состояния вещества

Жидкость – агрегатное состояние вещества, промежуточное между газообразным и жидким. Сохранение объема у жидкости доказывает, что между её молекулами действуют силы притяжения, т.е. расстояние между молекулами жидкости меньше, чем радиус молекулярного действия.

Если вокруг какой-либо молекулы жидкости описать сферу молекулярного действия, то внутри этой сферы окажутся центры многих других молекул, которые будут взаимодействовать с этой молекулой. Эти силы взаимодействия удерживают молекулу жидкости около её временного положения равновесия примерно 10 -12 – 10 -10 , после чего она перескакивает в новое временное положение равновесия приблизительно на расстояние своего диаметра.

Молекулы жидкости между переходами совершают колебательное движение около временного положения равновесия. Время между двумя переходами молекулы из одного положения равновесия в другое называется временем осёдлой жизни (≈ 10 -11 с). Это время зависит от вида жидкости и температуры.

Чем выше температура жидкости, тем меньше время оседлой жизни. В течение времени осёдлой жизни большинство молекул удерживается в своих положениях равновесия и лишь немногие успевают за это время перейти в новое положение равновесия. За более длительное время уже большинство молекул жидкости успевают переменить своё местоположение.

Если в жидкости выделить малый объём, то в течение времени осёдлой жизни в нём существует упорядоченное расположение молекул, подобно их расположению в кристаллической решетке твердого тела. Затем оно распадается и возникает в другом месте.

Таким образом, всё пространство, занятое жидкостью, как бы состоит из множества зародышей кристаллов, которые распадаются в одних местах, но возникают в других. Значит, в небольшом объёме жидкости наблюдается упорядоченное расположение молекул, а в большом объёме оно оказывается хаотическим.

Т.е. в жидкости существует ближний порядок в расположении молекул и отсутствует дальний порядок. Такое строение жидкости называется квазикристаллическим (кристаллоподобным).



Свойства жидкости:

1. упругость (если время воздействия силы на жидкость мало). При резком ударе палкой о поверхность воды палка может сломаться или вылететь из руки, или отскакивание камня от поверхности воды.

2. текучесть (если время воздействия на жидкость велико) Например, рука легко проникает внутрь воды.

3. хрупкость при кратковременном воздействии силы на струю воды.

4. прочность (немного меньше, чем у твердых тел). Прочность воды на разрыв составляет 2,5∙10 7 Па.

5. сжимаемость очень мала. При увеличении давления на 1 атм. объём воды уменьшается на 50 миллионных долей.

6. кавитация – резкое захлопывание пустот внутри жидкости при интенсивном воздействии на неё, например, при вращении гребных винтов или распространении в жидкости ультразвуковых волн. Кавитация служит причиной быстрого износа гребных винтов.

При переходе вещества из твердого состояния в жидкое происходит менее резкое изменение свойств, чем при переходе из жидкого в газообразное.

Значит, свойства жидкого состояния вещества ближе к свойствам твердого состояния, чем к свойствам газообразного.

Поверхностный слой жидкости

Выясним, чем отличаются действия молекулярных сил внутри жидкости и на её поверхности. Среднее значение равнодействующей молекулярных сил, приложенных к молекуле М 1 , которая находится внутри жидкости, близко к нулю.

Иначе обстоит дело с молекулами М 2 и М 3 , находящимися в поверхностном слое жидкости. Опишем вокруг молекул сферы молекулярного действия радиусом r м (≈ 10 -9 м). Тогда для молекулы М 2 в нижней полусфере окажется много молекул (так как снизу находится жидкость), а в верхней – значительно меньше (т.к. сверху – пар и воздух).

Значит для молекулы М 2 равнодействующая молекулярных сил притяжения в нижней полусфере R Ж много больше равнодействующей молекулярных сил в верхней полусфере R П .

Сила R П мала и ей можно пренебречь. Равнодействующая молекулярных сил притяжения, приложенных к молекуле М 3 меньше, чем для молекулы М 2 , так как определяется только действием молекул в зачерненной области. Существенно, что равнодействующие для молекул М 2 и М 3 направлены внутрь жидкости перпендикулярно к её поверхности.

рис. 20

Таким образом, все молекулы, находящиеся в поверхностном слое толщиной, равной радиусу молекулярного действия (рис. 20) втягиваются внутрь жидкости.

Но пространство внутри жидкости занято другими молекулами, поэтому поверхностный слой создаёт давление на жидкость, которое называется молекулярным давлением. Определить молекулярное давление опытным путем нельзя, т.к. оно действует не на тело, погруженное в жидкость, а на неё саму.

Теоретические расчёты показали, что молекулярное давление велико (для воды оно равно 11∙10 6 Па, а для эфира – 1,4∙10 8 Па). Теперь понятно, почему трудно сжать жидкость. Действительно, для этого надо создать давление того же порядка, что и молекулярное давление самой жидкости. А это очень трудно.

  • 11.2.2.3. Закон Шарля
  • 11.2.2.4. Объединенный газовый закон Мариотта - Гей-Люссака
  • 11.2.2.5. Основное уравнение состояния идеального газа (уравнение Менделеева-Клапейрона)
  • 11.2.2.6. Закон Авогадро
  • 11.2.2.7. Закон Дальтона
  • 11.3. Молекулярно-кинетический смысл абсолютной температуры
  • 11.4. Экспериментальное подтверждение молекулярно-кинетической теории газов (опыт Штерна)
  • 12.1. Распределение энергии по степеням свободы
  • 12.2. Вероятность и флюктуации. Распределение молекул (частиц) по абсолютным значениям скорости. Распределение Максвелла. Скорости теплового движения частиц. Средняя длина свободного пробега молекул
  • 12.3. Распределение Больцмана. Барометрическая формула
  • 12.4. Внутренняя энергия и теплоемкости идеального газа. Классическая теория теплоемкостей
  • Формулы кинетической энергии молекул газа в зависимости от числа степеней свободы
  • 13.1. Первое начало термодинамики
  • 13.1.1. Первое начало термодинамики в применении к изопроцессам в идеальных газах
  • 13.1.1.1. Изотермический процесс
  • 13.1.1.2. Изобарический процесс
  • 13.1.1.3. Изохорический процесс
  • 13.1.1.4. Адиабатический процесс
  • 13.2. Обратимые, необратимые и круговые процессы (циклы)
  • 13.3. Цикл Карно. Максимальный кпд тепловой машины
  • 13.4. Энтропия системы и её свойства. Определение изменения энтропии системы, совершающей какой-либо изопроцесс
  • 1. Изотермический.
  • 2. Изобарический.
  • 3. Изохорический.
  • 4. Адиабатический.
  • 13.5. Второе начало термодинамики. Термодинамические потенциалы
  • 13.5.1. Второе начало термодинамики
  • 13.5.2. Термодинамические потенциалы
  • 13.6. Третье начало термодинамики. Применения термодинамики
  • 14.1. Термодинамика неравновесных процессов
  • 14.2. Закон сохранения массы в термодинамике неравновесных процессов
  • 14.3. Закон сохранения импульса в термодинамике неравновесных процессов
  • 14.4. Закон сохранения энергии в термодинамике неравновесных процессов
  • 14.5. Уравнение баланса энтропии
  • 15.1. Реальные газы. Молекулярные силы. Уравнение Ван-дер-Ваальса. Изотермы Ван-дер-Ваальса и экспериментальны изотермы реальных газов
  • Критическая температура и температура кипения некоторых жидкостей
  • 15.2. Внутренняя энергия реального газа
  • 15.3. Эффект Джоуля - Томсона. Сжижение газов
  • 15.4. Фазы и фазовые превращения. Фазовые диаграммы. Условия равновесия фаз
  • 15.5. Уравнение Клапейрона-Клаузиуса. Метастабильные состояния. Критическая точка
  • 15.6. Тройная точка. Фазовые переходы 1-го и 2-го рода
  • 16.1. Понятие о физической кинетике. Вязкость жидкостей и газов. Коэффициент вязкости жидкостей и газов. Динамическая и кинематическая вязкости
  • 16.2. Диффузия и теплопроводность. Коэффициенты диффузии и теплопроводности
  • Кинетические явления (явления переноса). Переносимая величина, уравнение процесса, коэффициент процесса
  • 17.1. Строение жидкостей
  • 17.2. Свойства жидкостей (вязкость, текучесть, сжимаемость и тепловое расширение)
  • 17.3. Поверхностное натяжение. Энергия поверхностного слоя жидкости
  • 17.4. Поверхностные явления на границе раздела двух жидкостей или жидкости и твердого тела
  • 17.5. Капиллярные явления. Закон Жюрена
  • 17.6. Кинематическое описание движения жидкости
  • 17.7. Уравнения равновесия и движения жидкости. Стационарное движение идеальной жидкости. Уравнение Бернулли
  • 17.8. Гидродинамика вязкой жидкости. Силы внутреннего трения. Коэффициент вязкости. Стационарное течение вязкой жидкости. Уравнение неразрывности. Течение по трубе. Формула Пуазейля
  • 17.9. Жидкие кристаллы
  • 17.9.1. Строение жидких кристаллов (жк)
  • 17.9.2. Физические свойства жидких кристаллов и их применение
  • 17.10. Магнитные жидкости
  • 17.10.1. Структура магнитных жидкостей (мж)
  • 17.10.2. Получение магнитных жидкостей
  • 17.10.3. Свойства магнитных жидкостей
  • 17.10.4. Применение магнитных жидкостей
  • 17.11. Кристаллическое состояние
  • 17.11.1. Отличительные черты кристаллического состояния
  • 17.11.2 Классификация кристаллов
  • 17.11.3 Физические типы кристаллических решеток
  • 17.11.4 Тепловое движение в кристаллах. Теплоемкость кристаллов
  • 17.11.5. Скорость звука в кристалле. Цепочечная модель
  • Можно записать дифференциальное уравнение
  • Библиографический список Основной
  • Дополнительный
  • Полунин Вячеслав Михайлович
  • Сычев Геннадий Тимофеевич
  • Конспект лекций по молекулярной физике и термодинамике для студентов инженерно-технических специальностей
  • 17.3. Поверхностное натяжение. Энергия поверхностного слоя жидкости

    Силы взаимодействия между молекулами жидкости быстро убывают и действуют только внутри сферы молекулярного действия с центром в данной молекуле. При этом если молекула находится внутри жидкости, то результирующая сил молекулярного взаимодействия равна нулю. Это не относится к молекулам, находящимся у поверхности жидкости, в ее поверхностном слое. На молекулы поверхностного слоя действует сила направленная внутрь жидкости, перпендикулярно ее поверхности Объясняется это тем, что концентрация молекул жидкости над ее поверхностью (в паре или газе, с которым граничит жидкость) мала (рис.17.3).

    Эта равнодействующая стремится втянуть внутрь данную молекулу во внутренние слои жидкости. Следовательно, весь поверхностный слой жидкости находится в особом состоянии. Он оказывает на жидкость некоторое давление. В соответствии с этим молекулы жидкости в поверхностном слое обладают дополнительной потенциальной энергией.

    Перемещение молекулы из поверхностного слоя внутрь жидкости сопровождается совершением работы, при этом потенциальная энергия молекул поверхностного слоя уменьшается, переходит в кинетическую энергию этих молекул. Переход молекулы из глубины жидкости в поверхностный слой требует совершения работы по преодолению результирующей силы. Эта работа может совершаться за счет дополнительной энергии за счет ее кинетической энергии. Потенциальная энергия молекулы, перешедшей в поверхностный слой, увеличивается. С течением времени, при неизменных внешних условиях, устанавливается равновесие (число молекул, покинувших поверхностный слой, будет равно числу молекул вновь оказавшихся в этом слое). Число молекул в поверхностном слое будет неизменным.

    Кроме сил, действующих на молекулы поверхностного слоя в перпендикулярном направлении к поверхности, на них действуют силы в горизонтальном направлении (по касательной к поверхности жидкости). Они вызывают стремление жидкости сократить (уменьшить) свою поверхность. Эти силы получили название сил поверхностного натяжения. Следовательно, силы поверхностного натяжения направлены по касательной к поверхности жидкости, перпендикулярно к участку контура, охватывающего поверхность жидкости.

    Изменение внешних условий может изменить поверхность жидкости, в результате нарушается равновесие, и некоторое количество молекул может перейти в поверхностный слой. В этом случае будет совершаться работа dA пропорциональная изменению поверхности жидкости на dS

    , (17.10)

    где "минус" показывает, что увеличение поверхности жидкости сопровождается совершением работы;

     - коэффициент поверхностного натяжения, который характеризует свойства поверхности жидкости и показывает, какую работу необходимо совершить, чтобы увеличить поверхность жидкости на единицу поверхности.

    Работа по изменению поверхности жидкости может совершаться либо за счет изменения потенциальной энергии поверхностного слоя жидкости, (поверхностной энергии жидкости dW ps), либо внешними силами. При этом
    , но
    тогда


    или
    . (17.11)

    Потенциальная энергия поверхностного слоя жидкости W ps является составной частью внутренней энергии жидкости и ее свободной энергии.

    Известно, что при неизменных внешних условиях, в частности при постоянной температуре, любая термодинамическая система стремится к состоянию с свободной минимальной энергией. А так как W ps  S, то, следовательно, W ps к минимальному значению, при минимальном значении поверхности S. Таким образом, при постоянной температуре жидкость стремится к такому состоянию, при котором ее поверхность минимальна. Данное утверждение позволяет предсказать, как будет вести себя жидкость в тех или иных условиях.

    Предположим, что поверхностный слой жидкости занимает некоторую поверхность. Этот слой стремится уменьшить свою поверхность. Чтобы система находилась в равновесии, к границе слоя необходимо приложить силу, численно равную силе поверхностного натяжения F (рис.17.3).

    Если под действием этой силы граница поверхностного слоя сместится на dx, то будет совершена работа
    .

    Эта работа

    a
    . (17.13)

    Следовательно, коэффициент поверхностного натяжения, численно равен силе поверхностного натяжения, которая стремится изменить длину (величину) контура, охватывающего поверхность жидкости, на единицу.

    Силами поверхностного натяжения определяется форма капель жидкости. Так как обычно жидкость находится в поле земного тяготения, то ее капли принимают форму, соответствующую минимальной сумме поверхностной энергии и потенциальной энергии в поле тяготения в зависимости от соотношения этих энергий. У капель жидкости, обладающих достаточным объемом, форма типа эллипсоида. По мере уменьшения размеров капли поверхностная энергия начинает играть существенную роль, т.к. объем и масса капли уменьшаются пропорционально кубу, а ее поверхность - квадрату радиуса. Поэтому очень малые капли принимают шарообразную форму. В условиях невесомости жидкость принимает сферическую форму при любом объеме.

    Установить зависимость коэффициента поверхностного натяжения от температуры можно, применив к растяжению жидкой пленки первое начало термодинамики.

    Предположим, что пленка состоит из чистой жидкости, (хотя такая пленка неустойчива) и в ней совершается некоторый замкнутый цикл, состоящий из изотермического и адиабатического расширений и таких же процессов сжатия. Пусть в начальном состоянии пленка находится в некотором состоянии "1" и характеризуется температуройT. Сообщив ей некоторое количество тепла dQ, можно изотермически перевести (растянуть) ее в состояние "2". Произойдет изменение площади пленки на
    , за счет совершенной работы (рис. 17.4). При этом

    . (17.14)

    Поверхностное натяжение в этом случае не изменится.

    Если из состояния "2" пленку адиабатически перевести в состояние "3" (растянуть), то за счет работы внешних сил, температура понизится на dT, что приведет к изменению коэффициента поверхностного натяжения на d.

    При изотермическом сокращении пленки, она перейдет в состояние "4", а при адиабатическом - вернется в состояние "1".

    Работа такого цикла равна разности работ при расширении и сжатии. Можно показать, что она в этом случае будет равна

    . (17.15)

    Если учесть, что вначале пленкой было получено dQ теплоты, то коэффициент полезного действия цикла

    , (17.16)

    где "минус" указывает на то, что при сокращении пленки выделяется некоторое количество тепла. Тогда

    (17.17)

    где r = dQ/S - количество тепла, затраченное на изменение пленки на единицу.

    Таким образом, с повышением температуры величина коэффициента поверхностного натяжения уменьшается.

    Подобно упругой пленке поверхностный слой жидкости стремится принять форму плоскости. Поэтому в изогнутом слое жидкости появляются силы, создающие дополнительное давление, увеличивающее или уменьшающее молекулярное давление. С учетом данного утверждения полное молекулярное давление будет равно

    , (17.18)

    где p o - молекулярное давление жидкости с плоской поверхностью;

    p - дополнительное давление, возникающее за счет кривизны поверхности;

    "плюс" - соответствует выпуклой поверхности;

    "минус" – соответствует вогнутой поверхности.

    Поверхностное натяжение жидкости обуславливает дополнительное давление в жидкости, величина которого зависит от радиуса кривизны поверхности и коэффициента поверхностного натяжения. Получим формулу для расчета дополнительного давления под искривленной поверхностью жидкости (твердого тела), называемую формулой Лапласа.

    Пусть площадь элемента поверхности равна ∆S. Вычислим силы поверхностного натяжения, приложенные к линиям "АВ" и "СД", которыми ограничен этот элемент поверхности F и F". Составляющие этих сил направлены к центру кривизны и обуславливают дополнительное давление. Эти составляющие, перпендикулярны к ∆S и направлены параллельно радиусу кривизны. Если поверхность плоская, то нормальной составляющей силы нет, дополнительного давления также нет. (Вторая составляющая F || на давление влияния не оказывает.) Итак, имеем:


    (17.19)

    Сила имеет такую же составляющую

    ;
    (17.20)

    То же получим и для участков "АС" и "ВД" (только
    )

    ;
    (17.21)

    ;
    (17.22)

    Сложив все четыре компонента, будем иметь

    Откуда для дополнительного давления находим


    (17.24)

    Полученное соотношение (17.24) называют формулой Лапласа. Из формулы Лапласа вытекает:

    1) при R 1 = R 2 = R,
    , что справедливо для сферической поверхности;

    2) при R 2  ,
    , что справедливо для цилиндрической поверхности;

    3) силы, создающие дополнительное давление, всегда направлены к центру кривизны поверхности жидкости. В случае выпуклой поверхности, радиус кривизны R положителен, следовательно, дополнительное давление увеличивает молекулярное давление. В случае вогнутой поверхности, радиус кривизны R отрицателен, дополнительное давление уменьшает молекулярное давление.

    Надо отметить, что полученный вывод справедлив для капли, которая полностью заполнена жидкостью, или для пузырька внутри жидкости.

    Если имеется пузырек, например мыльный, то давление, которое оказывает поверхность пузырька на заключенный на него газ, вдвое больше. Это объясняется тем, что у такого пузырька две поверхности: наружная и внутренняя, каждая из которых создает почти одинаковые дополнительные давления. В этом случае:

    а) для сферической поверхности

    ; (17.25)

    б) для цилиндрической поверхности

    . (17.26)