Строительный портал - Винтажная Москва
Поиск по сайту

Зарядное устройство на полевом инверторе схема. Полумостовой инвертор в зарядном устройстве

Scanner’s PS model: e12s

БП HP ScanJet3570c

http://. ru/forum/hp-scanjet3570ce12s-info-269744.html

2PA1015: Э-К-Б – зеркально от КТ502 http://www. datasheetcatalog. org/datasheet/philips/A1015.pdf

SSP4N60AS http://www. datasheetcatalog. org/datasheets/270/248252_DS. pdf

C5 – 0,1 мкФ

ПРОСТОЙ ОБРАТНОХОДОВЫЙ ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ

Абрамов Сергей г. Оренбург

http://www. radio-konst. *****/moi_konstrukcii/prost_obr_preobr/prost_obr_preobr. htm

Преобразователь схема которого изображена на рис1 был скопирован с одной из частей блока питания компьютера типа ATX и обеспечивает на выходе по 12 вольтам ток порядка 100ма., по 5 вольтам – 2 ампера. Работоспособность блока питания сохраняется при изменении входного напряжения от 80 до 260 вольт. Выходные параметры несколько отличаются от родного блока питания так как трансформатор Т1 был изменен.

Рассмотрим работу схемы. Переменное напряжение, пройдя через сетевой заграждающий фильтр C1,C2,L1 выпрямляется диодным мостом VD1-VD4 и сглаживается емкостью C3. Первоначально запуск преобразователя осуществляется за счет смещения, поступающее с резистора R1 которое приоткрывает транзистор VT1. Затем режим автогенерации осуществляется за счет положительной местной обратной связи обмоток I и II трансформатора Т1. Резистор R4 является датчиком пилообразного тока первичной обмотки трансформатора. При превышении тока (около 1 ампера при запуске преобразователя или при перегрузке) приоткрывается транзистор VT2 который устанавливает нулевой потенциал на затворе VT1 и тем самым закроет его. При запирании силового транзистора VT1 магнитная энергия, накопленная сердечником трансформатора T1, передается в нагрузку. Импульсное напряжение сглаживается конденсатором С10 по 12 вольтам и конденсаторами С7,С9, дросселем L2 по 5 вольтам. Резисторы R5-R12, VD7-VD9, микросхема VD12 и оптопара VS1 образуют петлю отрицательной обратной связи, стабилизирующую выходное напряжение. При превышении выходного напряжения увеличивается ток, протекающий через светодиод оптрона и тем самым еще сильнее открывает транзистор оптопары. При этом через диод VD9 открывается транзистор VT2 который закрывает VT1 раньше окончания импульса автогенерации и тем самым уменьшает время накопления энергии трансформатором Т1. А это в свою очередь уменьшает выходное напряжение.

В блоке питания установлены резисторы типа МЛТ. Постоянные емкости типа КМ. Вместо диодов VD1-VD4 можно применить КД209, вместо 1N4148 –КД522, вместо FR153 –КД510, вместо SB360 – КД213 и при этом его придется установить на радиатор.

Для трансформатора Т1 был использован стандартный каркас и Ш-образный ферритовый магнитопровод от ТМС-15. Для нормальной работы в обратноходовом блоке питания сердечник необходимо доработать. Для этого стачиваем алмазным надфилем среднюю часть керна, так чтобы зазор был равен 0,32мм. Первичная обмотка намотана проводом ПЭВ-2 диаметром 0,2мм и содержит 168витков. Вторичная, намотана тем же проводом и содержит 14 витков. Третья обмотка намотана в два провода ПЭВ-2 диаметром 0,5мм и составляет 15 витков. Четвертая обмотка намотана проводом ПЭВ-2 диаметром 0,2мм и составляет 21 виток. Для уменьшения потерь в проводах на высокой частоте трансформатор мотаем следующим образом. Первым слоем укладываем 50 витков первичной обмотки, 2-ым. слоем 8 витков третьей обмотки, 3-им. слоем 50 витков первичной обмотки, 4-ым. слоем оставшиеся 7 витков третьей обмотки, 5-ым. слоем 50 витков первичной обмотки, 6-ым. слоем 14 витков вторичной обмотки располагаем равномерно по всему слою, 7-ым. слоем равномерно укладываем оставшиеся витки первичной обмотки, 8ы-м. слоем 21 виток четвертой обмотки. Между каждым слоем прокладываем изоляцию из тонкой трансформаторной бумаги. Дроссель L1 намотан на ферритовом кольце типа М2000НМ размером К20х10х5 скрученным между собой двойным проводом МГТФ-0,12 и состоит из 30 витков. Дроссель L2 намотан на ферритовом стержне М600НМ диаметром 8мм. и длинной 20мм. и содержит 20 витков провода ПЭВ-2 диаметром 0,9мм.

Устройство собрано на печатной плате Рис2. из стеклотекстолита размерами 35х65мм.

https://pandia.ru/text/78/206/images/image003_94.jpg" width="644" height="427">

2SK2022 можно заменить на IRF840 или, ещё лучше, на 06N60 (в префиксе могут стоять разные буквы, зависят от фирмы-производителя). Первые две цифры - ток стока в амперах, вторые две - напряжение без последнего нуля.

Кстати, эта схема на полевике работает совсем не так, как блокинг-генератор на биполярном транзисторе. Связка транзисторов Q1 Q2 + резистор R7 представляет собой аналог тиристора . Как только напряжение на истоковом резисторе R5 (1 Ом) превысит значение 0,7 В (порог открывания транзистора Q2), аналог тиристора лавинообразно открывается и закорачивает затвор полевика на общий минус, тем самым обрывая формирование импульса прямого хода (открытого состояния полевика). Либо же он "пробивается" при приоткрывании оптрона, когда выходное напряжение превышает заданное, чем достигается его стабилизация.

http://*****/forums/showthread. php? t=20085

Хороший знакомый попросил "довести до ума" сетевой импульсный блочок питания. Схема вырисована по плате. В нём выгорели все три транзистора и резистор R6, а также транзистор оптрона. Остальные элементы проверены - целые. Плата многократно перепаивалась, поэтому сделал новую по размерам старой. Ещё не включал, т. к. возникло ряд вопросов:

1. Каким должен быть VT3 - полевым или биполярным? Лично я думаю, что, судя по номиналу резистора R1 = 680 кОм - полевым, т. к. для биполярного недостаточно будет напряжения на базе для первоначального запуска. Очень похожий по схеме блочок уже побывал у меня в руках (к сожалению, я его пока за недостатком времени так и не запустил https://pandia.ru/text/78/206/images/image005_72.jpg" width="667" height="341 src=">

блоки питания по этим схемам работают следующим образом:
Резистор R1 (Схема А) обеспечивает начальное открывание VT3. Как только он начал открываться, появляется напряжение на обмотке II (условно, по схеме ниже первичной), которое через RC цепочку открывает транзистор до насыщения. Далее при увеличении тока через VT3, при достижении на R6 напряжения достаточного для открывания VT2, он открывается вместе с VT1 закрывая VT3. В момент, когда VT3 начнёт закрываться, изменится знак напряжения на обмотке II, и через C4R5 приведёт к ускорению его закрывания. В это время идёт зарядка С5, для питания оптрона, и закрытие VT1,2. В этот момент обратной связи ещё нет и VT3 выключается при максимальном токе.

Время закрытого состояния VT3 определяется окончанием отдачи запасенной энергии во вторичные цепи. а постоянная времени цепочки C4R5 не должна мешать передаче всей энергии.

Далее VT3 опять отрывается и цикл повторяется. Через несколько циклов, на вторичке напряжение выросло, до нужной величины, включается оптрон, давая дополнительное смещение на базу VT2, регулируя(уменьшая) ток отсечки VT3.

Несколько блочков по аналогичной схеме.
В некоторых VT3 - биполярный, но в них сопротивление R1 колебалось от 240 до 330 ком и помоему С4 был большего номинала. Схему одного рисовал, но чтото не найти сейчас...
Один, в котором как и у Вас выгорели все транзисторы и часть резисторов, мне реанимировать не удалось. Такое впечатление, что в трансформаторе в первичной обмотке появились короткозамкнутые витки.

З. Ы. №2 Я бы посоветовал для начала экспериментов поставить R6 несколько ОМ, например 3,3 или 4,7 Ом. На холостом ходу или с маленькой нагрузкой он запустится. Далее нагружая блок по вторичке контролируем цикл работы VT3. А так как это обратноходовой БП, то для него соотношения времен вкюченного и выключенного состояния силового транзистора для критического режима известны.
Если мощности на выходе не хватает, то уменьшить R6.

В Схеме А R3 обязателен для создания падения напряжения от тока оптрона
VT3 в подобных схемах биполярник - 13001, 13003, полевик не раскачается - нужен обратный диод в затвор
Р5 нужен для старта преобразователя, потом он роли не играет
После старта транзистор работает исключительно за счет ПОС через С2 - вначале открывается до насыщения, потом ток во 2-й обмотке начинает спадать, он через С2 закрывается и ток во 2-й обмотке от этого спадает ещё сильнее. Потом начинается нарастание (автоколебания), транзистор приоткрывается и ток от этого лавинообразно увеличивается. Параметры С2 - индуктивность 2-й обмотки определяют частоту генерации
От Р8 зависит ток срабатывания защиты - в данном случае 0,7 А, т. е. при выходной мощности ватт 150... Для 20 Вт надо 4,7...6,8 Ом. Хотя сама защита включена неправильно, работать не будет

Если трансформатор уходит в насыщение при недостаточной, по отношению к нагрузке, мощности. Для увеличения мощности этого трансформатора понадобится увеличить зазор в сердечнике, соответственно, увеличить число витков в обмотках, увеличить диаметр провода.
но тут приходим к тому, что нужное число витков нужного диаметра провода, просто не поместится в окне сердечника.
но если в исходном виде окно сердечника заполнено не полностью, то немного мощность трансформатора поднять можно.

Выложу заодно схему и второго "пациента" (который так и не запустил).

Дваждый менял забеременевший С8, после чего он продолжал работать (до третьего раза). В конце концов выгорели все три транзистора, транзистор оптопары, резисторы R4, R8. Также резистор R7 изменил цвет до нераспознаваемости полосок. Поэтому на схеме указаны номиналы, приблизительно поставленные после их долгого и мучительного рассматривания. Номинал резистора R3 - "родной". Транзисторы - тоже "родные". При запуске через последовательно включенную лампу накаливания она горит в полный накал. Получается, что транзистор VT3 постоянно открыт...

Вопросы:
1. Насколько я ошибся с определением номиналов?
2. Смущает номинал R3. Получается, что при начальном запуске на затвор VT3 поступает 30 В. Как же он тогда закрывается?
3. Смущает также номинал R4. При симулировании в Мультисиме этот узел начинает работать при его значении на 2 порядка больше (22 кОм). - закрывается через VT2 и R4.
Мультисим может только то, чему его научили

https://pandia.ru/text/78/206/images/image007_57.gif" width="709" height="459 src=">

Имел дело с такими блоками питания. Они часто идут в комплекте с адаптерами USB to IDE/SATA. Во вложении имеющиеся у меня мои зарисовки с плат и найденная схема на просторах инета. Может кому будет полезной.
маленькие транзисторы комплиментарная пара запросто меняется на отечественные КТ3102/3107 и кт502/503 и я полагаю что и на кт315/361. Очень часто горит вместе с силовым транзистором и цепочка R2C2 резистор 47К и конденсатор 103 по схеме с инета.

С3=33нФ С4=22нФ

https://pandia.ru/text/78/206/images/image009_49.gif" width="695" height="475 src=">

С однополупериодным выпрямителем:

https://pandia.ru/text/78/206/images/image011_48.gif" width="695" height="475 src=">

подобные схемы работают с изменяющейся частотой.
частота зависит от нагрузки.
в данной схеме обратный ход заканчивается после передачи всей накопленной энергии.
минимальная частота будет при максимальной нагрузке, когда будет максимальное время накопления энергии и максимальное время передачи энергии в нагрузку.
и, соответственно, при маленькой нагрузке энергия будет быстро передаваться и быстро накапливаться - частота повысится.
расчет всегда делается на номинальную (максимальную) нагрузку. и в данном случае на минимальную частоту.

уменьшать емкость в цепи базы, как написал Sublime , для повышения частоты нельзя. этим заставляем транзистор выключиться раньше, когда требуемая энергия еще не накоплена. то есть, уменьшаем отдаваемую мощность.

отдаваемая мощность в максимальном режиме зависит от сопротивления истокового резистора.
в этой схеме резистор указан 12 Ом. выключение произойдет, когда падение на резисторе будет примерно 0,6 Вольта, и откроется второй транзистор (С945).
таким образом, при 12 Омах максимальный ток силового транзистора будет примерно 50 мА.
из чего понятно, что для увеличения мощности достаточно уменьшить величину истокового резистора, и взять ключ на соответствующий ток.
но с ростом коллекторного тока будет расти и базовый ток. поэтому потребуется еще уменьшать номинал базового резистора и увеличивать номинал конденсатора (1 кОм и 4700 пФ в этой схеме).
необходимость изменения этой цепочки для увеличения базового тока можно увидеть при наладке, когда отдаваемая мощность будет меньше расчетной.
у транзисторов 1300х довольно маленький коэф-т усиления, поэтому при большом увеличении мощности может потребоваться и замена С945 более мощным, с бОльшим допустимым током коллектора. думаю, что для ваших потребностей не придется менять С945. навряд ли вам потребуются десятки Ватт.

обратная связь заставляет С945 открыться раньше, чем регулируется отдаваемая мощность.

для правильного выбора истокового резистора смотрим в моей программе максимальную амплитуду тока ключа, и рассчитываем сопротивление, исходя из 0,6 Вольт падения.
еще. для выхода в режим под нагрузкой нужен запас по мощности. поэтому максимальную амплитуду тока ключа берем с запасом на выход в режим в 1,2-1,4 раза больше.

_____________________________________________________________________________

https://pandia.ru/text/78/206/images/image013_41.jpg" width="673" height="402 src=">

https://pandia.ru/text/78/206/images/image015_39.jpg" width="684" height="419 src=">

Китайские сетевые адаптеры 220В - 5В USB разъем (продолжение)
Если сравнивать схемы LDT-010A и LDT-12E то можно увидеть что прогресс идет )))) Интересно, что изменено в промежуточных версиях 010В или 12А.

USB адаптер 5В 1 А

https://pandia.ru/text/78/206/images/image018_36.jpg" width="659" height="451 src=">

Выкладываю схему 12В 2А источника и его доработку для перевода в режим источника тока для питания пары 10-ваттных светодиодов - ссылку в "покупках на ибее" дал.

Полгода нормально светят. Обратная связь берется с последовательного резистора 0,1 ома и через транзистор подается на управляющий электрод TL431. При данных номиналах ток стабилизируется на уровне 1,6-1,7 А (можно выжать и 2А, уменьшив базовый резистор до 3 ком, но так надежнее. Да и разброс по току у светодиодов небольшой есть, хотя их можно подобрать парами).
Падение на диодах при этом получается 9,2 - 9,3 В.

У меня 4 трехамперных светодиода последовательно уже почти год по подобной схеме работают. А транзистор лучше включать с местной ООС (эмиттерный резистор). Более стабильный результат получается и от температуры не зависит. Я транзисторы самые разные ставил - и КТ3107, и S9012 - практически подбирать не требуется - сразу нужный ток получается, и подстройка тока плавная.

в вашей схеме начальное смещение на транзистор приводит к тому, что ток будет зависеть от выходного напряжения, например, от количества включенных светодиодов, от их температурного коэффициента. Причём, при прогреве напряжение на светодиодах падает, что будет приводить к увеличению тока. Я понимаю, конечно, что стабильность принесена в жертву простоте. Можно, видимо, с помощью стабилитрона или пары диодов стабилизировать начальное напряжение на базе транзистора. А лучше, возможно, в качестве стабилитрона применить светодиод. Или выполнить узел на двух транзисторах в виде токового зеркала.
Я в своём варианте пренебрёг потерями на токовом шунте, т. к. использовал блок на 24В, и светодиоды 1 Вт, при токе около 300 мА.

нештатных" режимах (см. выше), и меня все устраивает. Кстати, если в 3-амперной схеме установить шунт 0,2 ома, то падения на нем достаточно для работы транзистора в линейном режиме и без дополнительного смещения (резистора 62К). Этот резистор актуален в маломощной схеме исключительно для выведения транзистора в линейный режим. А все остальное про температурную стабильность, малую зависимость от параметров транзисторов и простоту регулировки тока через диоды я у же писал. Так что, как я уже говорил, дело вкуса. Каждый делает по-своему.

________________________________________________________________________________

Выкладываю схемы еще двух "зверьков", побывавших у меня в руках.

В первом из них (GX-04) IMHO оригинально сделано формирование управляющего напряжения (диод в обратном включении), остальная схема - типичная. Во втором - применение трансформатора с двумя управляющими обмотками (отдельная - для формирования управляющего напряжения и отдельная - для ПОС), кроме того, нигде раньше не встречал такого включения транзисторов VT1VT2 для управления полевым ключом. Обычно - как на первой схеме.

Во второй был пробит выходной выпрямительный диод. После его замены - заработала. С первой еще трахаюсь.

P. S. Емкости электролитов маркировал по "старой советской" системе: емкость (мкф) х напряжение (вольт); емкости керамики/пленки - тремя цифрами, как на них написано.

https://pandia.ru/text/78/206/images/image021_28.jpg" width="682" height="241 src=">

Я и обращаю внимание на то, что во второй из них - как раз не аналог тиристора, а просто ключ + повторитель на р-п-р транзисторе (коллектор - на общем минусе). В отличие от первой, где транзисторы представляют собой именно аналог тиристора.

Сначала я долго-долго чесал репу, думая, что ошибся при вырисовывании. Но нет. Схема срисована именно так, как есть. Поэтому я ее и выложил для "коллекции" вариантов.

Зарядное работает. Схему составил из за устройства отключения зарядки.

https://pandia.ru/text/78/206/images/image023_22.jpg" width="680" height="454">

Источник питания на двухбазовом диоде (однопереходном транзисторе)

http:///pitanie/5-213.php

В статье рассматриваются принципы построения обратноходового для зарядки автомобильных аккумуляторов с использованием инвертора состоящего из генератора на двухбазовом диоде (однопереходном транзисторе) и мощного транзисторного ключа.

Введение: Конструирование источников питания на силовых трансформаторах прекратилась ещё в прошлом веке, ввиду больших габаритов и массы, и потерями электроэнергии на нагрев стабилизирующих элементов.

Разработка мощных высокочастотных транзисторов привела к их использованию в лёгких малогабаритных источниках тока. Применение ферритовых высокочастотных трансформаторов позволяют выполнить инвертирование энергии в нагрузку на частотах - соизмеримых с длиной радиоволн.

Для борьбы с этим отрицательным эффектом используется специальный порядок намотки обмоток трансформатора с применением внутренних межобмоточных экранов, снижением поверхностного эффекта тока простым расщеплением проводников на большее количество с меньшим сечением.

Принцип работы : В однотактный преобразователь входит два основных элемента – тактовый генератор на однопереходном транзисторе и блокинг - генератор на мощном транзисторе. Инвертирование энергии происходит многократно: энергия электросети выпрямляется диодным мостом и подаётся на ключевой преобразователь в виде постоянного напряжения.

Высокочастотный ключ инвертора на транзисторе преобразует постоянное напряжение питания в импульсный ток первичной обмотки трансформатора.
Вторичное напряжение выпрямляется и подаётся на нагрузку.

В обратноходовых инверторах (1), в период замкнутого состояния транзисторного ключа, идёт накопление энергии в трансформаторе. Передача накопленной в трансформаторе энергии в нагрузку происходит при нахождении транзисторного ключа в разомкнутом состоянии.

Однополярное намагничивание феррита трансформатора приводит к остаточной намагниченности трансформатора после магнитного насыщения магнитопровода.

Для однополярного намагничивания важно наличие немагнитного зазора в замкнутом магнитопроводе, он уменьшает остаточную магнитную индукцию, в результате чего можно снимать гораздо больший ток нагрузки без насыщения трансформатора.

Энергия, запасённая в трансформаторе за время коммутирующего импульса, не всегда успевает рассеяться за время паузы, это может привести к насыщению трансформатора и потере магнитных свойств. Для устранения этого эффекта первичная цепь трансформатора шунтирована быстродействующим диодом с резистивной нагрузкой.

Дополнительное действие оказывает отрицательная обратная связь с эмиттера ключевого транзистора на его базу через параллельный стабилизатор - такое решение позволяет ключевому транзистору переключится до насыщения магнитопровода, что снижает его температуру и улучшает рабочее состояние устройства в целом.

Вторичное высокочастотное напряжение трансформатора выпрямляется и подаётся в нагрузку. Для защиты транзисторного ключа в электронную схему вводятся элементы защиты от теплового и электрического пробоя. В момент переключения транзисторного ключа на обмотке индуктивного реактора возникают колебания импульсных напряжений, превышающие напряжение питания в несколько раз, что может привести к пробою транзисторного ключа.

В этом случае обязательно устанавливается демпфирующий диод для симметрии протекающего двухполярного тока.

Управление почти всей мощностью преобразования одним транзистором требует выполнение некоторых условий его безаварийной работы (2):
1. Ограничение базовых и коллекторных токов до допустимых пределов.
2. Отсутствие дефектов в электронных компонентах.
3. Правильно рассчитанный трансформатор.
4. Устранение возможного пробоя импульсными напряжениями преобразователя.
5. Снижение перегрева ключевого транзистора.
6. Переключение ключевого транзистора до момента насыщения магнитопровода.

Необходимо оптимизировать конструкцию трансформатора для максимального снижения индуктивности рассеивания, выполнить выбор сечения и количества проводников, уменьшить собственную ёмкость трансформатора, правильно выбрать транзисторный ключ и элементы кламперной цепи, подавляющей выброс обратного напряжения.

В схему инвертора входят :
1. Сетевой высоковольтный выпрямитель с фильтрами помех преобразования.
2. Элементы ограничения тока заряда конденсаторов сетевого фильтра.
3. Элементы защиты от импульсных помех высокого уровня.
4. Цепи преобразования вторичного напряжения.
5. Элементы индикации преобразования.
6. Формирователь импульсов запуска на однопереходном транзисторе VT1.
7. Блокинг – генератор на транзисторе VT2.
8. Элементы защиты от предельных токов силового ключа.
9. Параметрический стабилизатор напряжения питания генератора.
10. Элементы стабилизации выходного напряжения.

Характеристики транзисторного инвертора :
Напряжение сети 220Вольт
Вторичное напряжение 13,8 Вольт
Ток заряда максимальный 10Ампер
Ёмкость аккумулятора 24-120 А/час
Ток восстановления аккумулятора 0,05С 1,2-6 ампер
Время восстановления 3-5 часов.
Потребляемая мощность 160ватт.
Частота преобразования 23кГц

Описание принципиальной схемы :
В состав принципиальной схемы входит сетевой выпрямитель напряжения электросети на диодной сборке VD4. Коммутационные помехи в импульсных источниках питания возникают как следствие применения переключающего режима работы мощных регулирующих элементов (4). Для защиты сети и преобразователя от импульсных помех установлен сетевой фильтр на двухобмоточном дросселе T2 с конденсаторами С7, С8,С10 для подавления нессиметричных помех.

Двухобмоточный дроссель Т2 с синфазно включенными обмотками служит для подавления симметричных помех.

Ограничение зарядного тока конденсатора фильтра C4 выполнено на позисторе RT1,сопротивление которого падает с повышением температуры корпуса.
Импульсные помехи преобразователя, образованные ключевым транзистором VT2 и обмотками трансформатора Т1, в моменты переключения токов устраняются параллельными RC –цепями – VD2C5R11 и C6R13.

Снижение импульсных помех преобразования в низковольтных цепях нагрузки устраняются введением индуктивности L1 в одну из цепей. Длительность пауз между импульсами выходного тока при этом незначительно увеличивается без ухудшения преобразования.

Возможно использование в схеме магнитных дросселей из аморфного сплава.
Двунаправленный индикатор на светодиоде HL1 и цепь стабилитрона VD1 снижают уровень высоковольтных импульсных помех в цепях питания инвертора.

Формирователь импульсов запуска инвертора выполнен на двухбазовом диоде (однопереходном транзисторе) VT1. Импульсный блокинг - генератор собран на транзисторе VT2.

Стабилизация выходного напряжения выполняется оптопарой U1. Вторичное напряжение, с гальваническим разделением, через оптопару автоматически поддерживает поступление напряжения обратной связи с обмотки 2Т1 на вход транзистора VT2.

При подаче сетевого питания напряжение с конденсатора фильтра C4 через обмотку 1Т1 поступает на коллектор транзистора VT2 инвертора.
Зарядно-разрядный цикл конденсатора C1 создаёт на резисторе R4 последовательность импульсов с частотой зависящей от сопротивления резисторов R1,R2 и конденсатора С1.

Напряжение питания генератора на однопереходном транзисторе стабилизировано диодом VD1. Импульсное напряжение с резистора R4 открывает транзистор VT2 на несколько микросекунд, ток коллектора VT2 возрастает до 3-4 ампер.
Протекание коллекторного тока через обмотку 1Т1(5) сопровождается накоплением энергии в магнитном поле сердечника - после окончания положительного импульса ток коллектора прекращается.

Прекращение тока вызывает появление в катушках ЭДС самоиндукции, которая создаёт на вторичной обмотке 3Т2 положительный импульс.

При этом через диод VD5 протекает положительный ток. Положительный импульс обмотки 2Т1 через резисторы R5,R9,R14 поступает на базовый вывод транзистора VT2. Конденсатор С3 поддерживает устойчивость работы блокинг-генератора и схема переходит в режим автоколебаний. Повышение напряжения нагрузки приводит к открытию светодиода оптопары U1, фотодиод шунтирует сигнал с обмотки 2Т2 на минус источника питания, уровень импульсного напряжения на базе транзистора VT2 понижается со снижением зарядного тока аккумулятора GB1. Перегрузка транзистора VT2 токами приводит к увеличению уровня импульсного напряжения на резисторе R12 цепи эмиттера, открыванию параллельного стабилизатора напряжения на таймере DA1. Шунтирование импульсного напряжения на входе транзистора VT2 приведёт к снижению энергии в сердечнике трансформатора, вплоть до форсированной остановки режима автоколебаний.

Напряжение отсечки тока транзистора VT2 корректируется резистором R10.
После устранения сбоя произойдёт повторный запуск блокинг-генератора от формирователя импульсов запуска на транзистор VT1.

Выбор высокочастотного трансформатора зависит от мощности нагрузки.
При эффективном токе нагрузки в десять ампер и напряжении вторичной обмотки 16 вольт мощность трансформатора составит 160 ватт. С учётом действия тока заряда на аккумулятор для его восстановления достаточно мощности не более 100 ватт.
Мощность трансформатора напрямую зависит от частоты автогенератора и марки феррита, и при увеличении частоты в десять раз мощность увеличивается почти в четыре раза. Ввиду сложности самостоятельного изготовления в схеме использован трансформатор от монитора, возможно использование и от телевизоров.
Рекомендации по самостоятельному изготовлению высокочастотного трансформатора в (6).

Примерные данные трансформатора Т1:
Б26М1000 с зазором в центральном стержне 1-56 витков ПЭВ-2 0,51, 2 - четыре витка ПЭВ2 0,18, 3– 14 витков ПЭВ-2 0,31*3.

Наладку схемы начинают с проверки платы печатного монтажа, в цепь разрыва сетевого питания включают лампочку 220 вольт любой мощности, вместо нагрузки лампочку от автомобиля 12 вольт 20свечей. При первом включении и неисправных деталях сетевая лампочка загорит ярким светом - автомобильная не горит, при исправной схеме сетевая лампочка может гореть слабым накалом, а автомобильная ярко. Яркость лампочки в нагрузке, можно поднять или понизить резисторами R1. Защита от перегрузки по току устанавливается резистором R10, стабилизация напряжения под максимальной нагрузкой, регулируется резистором R5.
Резистором R15, при установке иных оптопар, корректируется ток светодиода оптопары U1 в пределах 5-6 мА.

При наличии осциллографа удобно проверить работу генератора на транзисторе VT1 с временной подачей на инвертор напряжения питания 30-50 вольт, частоту генератора можно изменить резистором R1 или конденсатором C1.

При слабой обратной связи (велико значение сопротивления резистора R5) или неверном подключении обмотки 2Т2 в режиме блокинг-генератора транзистора VT2 может отключиться от кратковременной перегрузки и не работать, повторный запуск произойдёт после повторного включения схемы, обратная связь с обмотки 2Т1 позволяет работать схеме в режиме автозапуска и последующего выбора устойчивого состояния работы схемы установкой значения резистора R5.

Таблица 1: Транзисторы обратноходовых преобразователей:

Транзистор

Рватт

Корпус

Примечание

С радиатором

Таблица 2: Элементы импульсного источника тока.

Тип по схеме

Наименование

Замена

Характеристика

Примечание

По таблице

радиатор

АОД107А
АОД133А

3,5Вольт 20ма - макс.

С уточнением распайки выводов

R2,R3,R4,R7,R8
,R9,R14.R15,R16

R6,R11,Rватт

20 ма макс.

КД226Б,
UF5404

КД257Г, FR155
КД258,UF5404

Вч - быстродействующие

Печатный монтаж двухсторонний размерами 115*65, перемычки расположены со стороны радиокомпонентов.

Радиатор ключевого транзистора VT2 использован от северного моста сопроцессора компьютера, бюджетный вентилятор компьютерного блока питания можно использовать по назначению с подключением к источнику питания 13,8 Вольт через резистор 33-56 Ом.

Скачать печатную плату в формате LAY

­­­­­­­­­­­­­­­­­­­­-___________________________________________________________________

Карманное ЗУ на основе адаптера сотового телефона

http:///pitanie/5-211.php

Постоянное обновление парка сотовых телефонов привело к бесполезному хранению и накоплению сетевых адаптеров, которые по параметрам и разъёму не могут использоваться на других моделях.

Возможно использование адаптеров сотовых телефонов для зарядки мощных автомобильных аккумуляторов.

Прямое подключение адаптера для зарядки автомобильных аккумуляторов невозможно - низкое выходное напряжение в пределах 4-8 вольт при токе заряда до 200 мА при необходимых параметрах 12 вольт 10 ампер. При рассмотрении схем обратноходовых импульсных источников питания, входящих в адаптеры, выявлено, что они содержат: сетевой выпрямитель с фильтром; блокинг-генератор с положительной обратной связью от отдельной обмотки; выходной низковольтный выпрямитель.

Стабилизация вторичного напряжения в некоторых адаптерах выполняется с помощью оптопары, включенной светодиодом к выходному напряжению выпрямителя, а фототранзистором в базовую цепь транзистора генератора преобразователя. Мощность адаптеров сотовых телефонов не превышает 3-5 ватт.

Для получения мощного зарядного устройства из адаптера сотового телефона достаточно схему выпрямителя дополнить усилителем мощности.

Удобство использования сотовых адаптеров заключается в отсутствии необходимости конструирования блокинг- генератора, намотки импульсного трансформатора, установки режима генерирования при значительных колебаниях сетевого напряжения. Компактные габариты печатной платы адаптера совместно с усилителем мощности и выходным выпрямителем занимают незначительное место, а по весу в15-20 раз меньше, чем зарядные устройства на силовых трансформаторах.
Практически такое устройство - карманного типа.

Основные технические характеристики:
Напряжение сети 165-265 Вольт.
Номинальное выходное напряжение 12 Вольт
Максимальный ток нагрузки 6 Ампер
Частота преобразованиякГц
Вес 200 грамм
Максимальная выходная мощность 100 ватт

Резистор R1 защищает диодный мост VD1 от пробоя при бросках зарядного тока конденсатора С3.
Светодиод HL1 указывает на наличие сетевого питания.

Схема импульсного генератора на транзисторе VT1 с внешними RC цепями (помещённая в рамку) относится к адаптеру и может отличаться по компоновке, нумерация деталей адаптера условная.
Резистор R3 создаёт начальное смещение на базу транзистора VT1, для устойчивой генерации в указанном пределе напряжения сети.

Конденсатор С7 заряжается через диод VD3 до амплитуды напряжения обратного хода, которое больше напряжения стабилизации стабилитрона VD4, в результате чего стабилитрон открывается, напряжение на базе транзистора VT1 становится отрицательным и препятствует его открыванию с паузой больше времени импульса. Ток созданный резистором R4 протекает через открытый стабилитрон VD3 на конденсатор С5, разряжая его. Напряжение на этом конденсаторе уменьшается, на базе транзистора VT1 - растёт. При достижении достаточной величины (более 0,4 Вольта) транзистор VT1 откроется, пауза закончится, начнётся новый цикл генерации.

Напряжение положительной обратной связи с обмотки 3Т2 через конденсатор С4 и резистор R4 откроет транзистор VT1, ток через обмотку 1Т2 лавинно возрастёт и энергия накопленная трансформатором Т2 передастся в виде прямоугольного импульса в базовую цепь усилителя мощности на полевом транзисторе VT2.

Импульс напряжения с обмотки 2Т2 через конденсатор С7 и регулятор тока заряда - R8 поступит на базу транзистора VT2 усилителя мощности. Резистор R9 защищает затвор полевого транзистора от ёмкостных сверхтоков.

От перегрузки транзистора VT2 большими токами в цепи истока установлена схема защиты на параллельном стабилизаторе DA1. Повышение напряжение на резисторе R12 приводит к открытию таймера на микросхеме DA1 и шунтированию цепи затвора.

Ферритового трансформатор Т3, от блоков питания компьютеров типа АТ/ТХ или от мониторов используются в зарядном устройстве без переделок. Первичная обмотка (она имеет до трёх выводов) включается в цепь стока транзистора VT2, к ней параллельно подключена демпфирирующая цепь C8,R10, VD6 - гашения импульсов тока обратного хода, которые могут пробить транзистор или привести к пробою в обмотках трансформатора T3.

Дополнительная цепь защиты на диоде VD7 установлена параллельно транзистору VT2.
Усилитель мощности на полевом транзисторе VT2 через трансформатор T3 передаёт в нагрузку усиленный высокочастотный сигнал, который после выпрямления лавинными диодами сборки VD8 питает зарядным током кислотный аккумулятор GB1. Амперметр РА1 позволяет визуально установить зарядный ток аккумулятора регулятором тока – R8. Светодиод HL2 контролирует полярность подключения аккумулятора GB1 в зарядную цепь и наличие напряжения на выходе устройства.

В импульсных преобразователях применяются полевые транзисторы с индуцированным п - каналом на напряжение 600-800 Вольт и током более трёх ампер с усилением более 1000ма/В. При нулевом напряжении на затворе транзистор закрыт и открывается положительным напряжением прямоугольной формы. Выбор в усилителе мощности полевого транзистора вместо биполярного выгоден по высокой скорости закрывания, что приводит к снижению потерь на нагрев. Зарядное устройство собрано на монтажной плате, плата адаптера установлена на дополнительных стойках.

Большая часть радиодеталей в зарядном устройстве используется от разобранных блоков питания компьютеров и мониторов.

Резисторы типа Р2-23. Транзистор VT1 - бюджетный на напряжение 400вольт и ток до одного ампера с хорошим усилением более 200.

Полевой транзистор VT2 с крутизной более 1000 мА/В при напряжении более 600 Вольт и токе 3-6 Ампер серий 2СК или IRF 740-840.
Трансформаторы: Т1- EE-25-01, 3PMCOTC210001. T2 - HI - POT. T3 - HI-POT TNE 9945, ВСК – 01С, АТЕ133N02, R320.
Оксидный конденсатор C4 фирмы «Nichicon» или HP3.
Все диоды импульсные с высоким быстродействием. Диоды выпрямителя VD6 заменимы на КД213Б.

Примерные значения обмоток трансформаторов:
Т1- сердечник 3*3 2*30 витков 0,6мм
Т2- сердечник 3*3. 1-360 витков 0,1мм.витков 0,2.витков 0,1.
Т3- сердечник 12*витка 0,6. 2,3 - 2*6 витков 1,6мм.

Полевой транзистор VT2 крепится на радиатор размерами 40*30*30. Клеммы ХТ3, ХТ4 подключаются к аккумулятору многожильным медным проводом в виниловой изоляции сечением 4мм. На концах устанавливаются зажимы типа «Крокодил».

Наладку устройства начинают с проверки работоспособности платы адаптера. Диод и конденсатор выпрямителя адаптера в схеме не используется, сигнал на усилитель мощности берётся непосредственно с обмотки трансформатора 2Т2,через разделительный конденсатор C7. Резистор R7 создаёт начальное смещение на затворе транзистора VT2.

При подключенном аккумуляторе резистором R8 выставляется зарядный ток в 0,05 С, где С - ёмкость аккумулятора. Время заряда определяется техническим состоянием аккумулятора и как правило не превышает 5-7 часов. При обильном кипении (электролизе) ток заряда следует понизить. Более подробно о заряде и восстановлении аккумуляторов можно прочитать в указанной ниже литературе или дополнительно обратится к авторам статьи.

Литература:
1. В. Коновалов, А.Разгильдеев. Восстановление аккумуляторов. Радиомир 2005 №3 с.7.
2 .В. Коновалов. А. Вантеев. Технология гальванопластики. Радиолюбитель №9.2008.
3. В. Коновалов. Пульсирующее зарядно-восстановительное устройство Радиолюбитель № 5 /2007г. стр.30.
4. В. Коновалов. Ключевое зарядное устройство. Радиомир №9/2007 с.13.
5 .. Аккумуляторы. г. Москва. Изумруд.2003 г.
6. В. Коновалов «Измерение R-вн АБ».«Радиомир» №8 2004 г. стр.14.
7. В. Коновалов «Эффект памяти снимает вольтдобавка.» «Радиомир» №10.2005 г. стр. 13.
8. В. Коновалов «Зарядно –восстановительное устройство для NI-Cd аккумуляторов.». «Радио» №3 2006 г. стр.53
9. В. Коновалов. «Регенератор АКБ». Радиомир 6/2008 стр14.
10. В. Коновалов. «Импульсная диагностика аккумулятора». Радиомир №7 2008г. стр.15.
11. В. Коновалов. «Диагностика аккумулятора сотовых телефонов». Радиомир 3/2009 11стр.
12. В. Коновалов. «Восстановление аккумуляторов переменным током» Радиолюбитель 07/2007 стр 42.
13. В. Коновалов. ЗУ для «мобильника» с цифровым таймером. Радиомир 4/2009 стр.13.

Обратноходовые преобразователи тока – инверторы состоят из мощного коммутатора импульсов с периодом, равным сумме открытого и закрытого состояния . В отличие от двухтактного преобразователя в них меньше радиокомпонентов, стабилизация режима работы выполняется оптоэлектронными обратными связями с цепей выходного напряжения на вход управления генератором, с изменением скважности импульса - широтноимпульсного преобразования сигнала управления.

Характеристика
Напряжение питания сети, В__180-240
Выходная мощность, Вт______ 100
Выходное напряжение, В______13,8
Выходной ток макс, А ________10
Частота генератора, кГц_____36
Вес, г_______________________360
Размеры, мм___________120x70x60
Емкость аккумулятора, А*ч__25-100

Регулировка выходного напряжения преобразователя - ручная или автоматическая. Высокочастотные трансформаторы преобразователя реализованы на ферритовых сердечниках.
Мощность преобразователей зависит от напряжения питания, частоты преобразования и магнитных свойств трансформатора.
Использование в качестве ключа полевого транзистора позволяет снизить потери сигнала на управление.
Ток, потребляемый первичной обмоткой трансформатора Т1, содержит прямоугольную составляющую, вызванную передачей энергии в нагрузку, и треугольную составляющую, связанную с намагничиванием материала магнито-провода.
Процессы накопления энергии и передачи ее в нагрузку в обратно-ходовых преобразователях четко разделены . В цепи стабилизации напряжения заряда аккумуляторов используется частотно-импульсное преобразование сигнала ошибки в изменение выходного напряжения на нагрузке. Схема сравнения представляет вход внешнего воздействия (модификации) на точку контрольного напряжения генератора инвертора. Использование данного вывода позволяет менять его уровень для получения модификаций схемы. С увеличением напряжения длительность импульсов на затворе силового ключа уменьшается, а, следовательно, снижается время пребывания ключевого транзистора в открытом состоянии. Напряжение на вторичных обмотках трансформатора также уменьшается и происходит стабилизация вторичного напряжения инвертора. Регулирование тока заряда выполняется широтно-импульсным изменением длительности импульса генератора при неизменной частоте. Диапазон регулировки скважности импульсов зависит от соотношения сопротивления резисторов регулятора тока заряда. В инверторе происходит тройное преобразование напряжения. Переменное напряжение электросети выпрямляется мощным диодным мостом и преобразуется инвертором в высокочастотное напряжение, которое через трансформатор подается, после выпрямления, в нагрузку.
Накопление энергии и ее передача в нагрузку разнесены во времени, максимальный ток коллектора ключевого транзистора не зависит от тока нагрузки.

Структура принципиальной схемы
В схему однотактного широтно-импульсного преобразователя (рис. 1) входит: генератор импульсов на аналоговом таймере DA1 с широтно-импульсным регулятором тока нагрузки R1, силовой ключ на полевом транзисторе VT1 с внешними цепями защиты от коммутационных помех, цепи защиты от повышения напряжения на нагрузке с гальваническим разделением цепей высокого и низкого напряжения оптопарой DA3, цепи защиты полевого транзистора от превышения токов коммутации на аналоговом стабилизаторе напряжения параллельного типа DA2, сетевого выпрямителя с ограничением пусковых токов заряда конденсатора фильтра и ограничением импульсных помех.

Описание работы элементов схемы
Генератор прямоугольных импульсов выполнен на аналоговом таймере DA1. В состав микросхемы входят: два компаратора, внутренний триггер, выходной усилитель для повышения нагрузочной способности, ключевой разрядный транзистор с открытым коллектором. Частота генерации задается внешней RC-цепью. Схемой предусмотрен вариант регулировки скважности импульсов при неизменной частоте.
Компараторы переключают внутренний триггер при достижении уровня порогового напряжения на конденсаторе С2 в 1/3 и 2/3 Un.
Вывод таймера 4 DA1 - вход сброса, используется для возвращения выхода 3 DA1 в нулевое состояние, независимо от состояния других входов, в данной схеме не используется.
Вывод 5 DA1 - вывод контрольного напряжения, позволяет получить прямой доступ к точке делителя верхнего компаратора. В схеме используется для получения модификаций режима генерации прямоугольных импульсов, с целью стабилизации выходного напряжения.
Вывод 7 DA1 соединен с внутренним разрядным транзистором аналогового таймера и используется для разряда внутренней емкости Сз-и полевого транзистора VT1. влияющую на скорость запирания.
Инвертор напряжения состоит из мощного ключевого транзистора VT1 и трансформатора Т1. Для защиты транзистора от пробоя импульсными токами и напряжениями, возникающими во время процесса преобразования, транзистор и трансформатор "обвязаны" диодно-резисторно-конденсаторными цепями.
Превышение уровня напряжения на резисторе R10 цепи истока дополнительно приводит к открытию параллельного стабилизатора DA2 и шунтирование затвора транзистора при перегрузках.
Трансформатор в инверторе заводского исполнения, от устаревших блоков питания компьютера. Трансформатор выбирается исходя из необходимой габаритной мощности, которая равна сумме мощности всех нагрузок.
Формулы по расчету сечения стержня и количества витков обмоток можно взять из . Сложность не в расчете, а в отсутствии соответствующего феррита и размеров, разобрать и перемотать заводской трансформатор без поломки феррита не удалось. Количество витков и их сечение практически подходит под расчеты. При токе нагрузки в 10 А и напряжении вторичной обмотки на холостом ходу не менее 18 В подходят трансформаторы на 250 Вт с площадью окна 15 мм2 и сердечником около 10 мм2. Зазор в таких трансформаторах состоит из тонкого слоя клея, то есть практически отсутствует, да и его введение, из-за снижения магнитной проницаемости, потребует увеличения витков обмоток почти вдвое.
Однотактные преобразователи применяются в маломощных источниках тока, когда нагрузка носит изменяющийся характер, что вполне подходит в данной ситуации.
Большую роль в максимальной мощности устройства играет частота преобразования инвертора, при росте ее в десять раз мощность трансформатора, без изменения феррита и обмоток, возрастает почти в четыре раза.
При конструировании зарядного устройства следует придерживаться рабочей частоты трансформатора с учетом характеристики транзисторного ключа. Заводское исполнение трансформаторов имеет расположение первичных и вторичных обмоток слоями, для обеспечения хорошей магнитной связи и снижения индуктивности рассеивания, дополнительно между секциями обмоток проложены электростатические экраны из бронзовой меди.
Обмотки высокочастотных трансформаторов выполняются многожильным проводом для снижения "поверхностного" эффекта.
Разбирать единственный трансформатор для уточнения расположения и количества витков не следует, потому как собрать грамотно в обратное состояние не удастся. Лучше поэкспериментировать без разборки, а обкатка схемы даст немалый опыт. Перед включением любой наспех собранной схемы, оденьте бронебойные очки или включите последовательно в сеть лампочку 220 В, предохранители в фильтрах питания при случайном коротком замыкании в любой схеме взрываются с выбросом всего, из чего они состоят . Даже заводская сборка схем преобразователей часто приводит к пробою рабочего транзистора и возможному возгоранию устройств.
Причины адекватны: занижены параметры транзистора или импульсные помехи от бытовых электроприборов превышают возможности фильтров.
Цепи снижения помех преобразователя. Неприятности в работе полевого транзистора возникают от действия межэлектродных проходных емкостей, при запирании транзистора они затягивают переходные процессы. Включение транзистора происходит подачей прямоугольного импульса с выхода 3 генератора таймера DA1 через резистор R5 на затвор, отключение -низким уровнем на выводе7 DA1. Прямое подключение затвора к таймеру, без резистора R5, приведет к критическому импульсу входного тока, который может перегрузить не только микросхему таймера, но и пробить электростатический переход между затвором и цепью сток-исток (в литературе рекомендуется пайку полевых транзисторов выполнять отключенным паяльником и при закороченных выводах транзистора, от возможного пробоя статическим электричеством).
Отсутствие резистора R7 в схеме также нежелательно, он снижает входное напряжение на затворе и разряжает входную емкость транзистора с небольшим запирающим потенциалом на резисторе R10.
Для ускорения разряда внутренней емкости полевого транзистора в обход резистора затвора устанавливают диод обратным включением, в данной схеме аналогового таймера вместо внешнего разрядного диода используется разрядный транзистор таймера, открытие которого происходит с переключением состояния внутреннего триггера, при нулевом напряжении на выходе 3 DA1.
Транзистор крепится на радиатор размерами 50*50*10 мм.
Дроссель Т2 представляет собой обмотку из десяти витков медного провода ПЭВ сечением 4x0,5 мм с ферритовым стержнем диаметром 4 мм.
Трансформатор Т1 использован от блоков питания АТ/АТХ типа R320. АР-420Х, первичная обмотка содержит 38-42 витка провода диаметром 0,8 мм, вторичная -2x7,5 витков сечением 4x0,31 мм -установленной мощности 250 Вт.
Цепи питания инвертора выполнены на импульсном диодном мосте
VD8 с повышенными нагрузочными характеристиками и конденсаторе фильтра С5.
Питание инвертора происходит непосредственно от сети, без гальванической развязки.
Колебания напряжения сети компенсируются цепями отрицательной обратной связи с гальваническим разделением вторичного и первичного, опасного для жизни, напряжения.
Заряд конденсатора фильтра ограничен резистором RT1, это защищает диодный мост VD8 от повреждения критическими токами. Импульсный ток через полевой транзистор инвертора ограничен резистором R14.
Цепи заряда аккумулятора. К ним относится выпрямитель на высокочастотной диодной сборке VD7. Для выравнивания тока заряда в фильтр входят конденсаторы С9, С11 и дроссель на трансформаторе Т2. В отсутствии выпрямленного напряжения на вторичной обмотке трансформатора Т1, при прямом ходе тока инвертора, напряжение на нагрузке поддерживается за счет энергии, накопленной в дросселе трансформатора Т2 и конденсаторе фильтра. При закрытии ключа энергия, накопленная в трансформаторе Т1, передается во вторичную обмотку и накапливается в конденсаторах фильтра и дросселе для последующей передачи в нагрузку.
Контроль тока нагрузки выполнен на гальванометре РА1 с внутренним шунтом на 10 А.
Возможные помехи, сопровождающие переключение диода VD7, устраняются конденсатором С11.
Цепи стабилизации по напряжению. Постоянное выходное напряжение преобразователя необходимо сравнивать с образцовым напряжением и вырабатывать напряжение ошибки рассогласования. Цепь стабилизации по напряжению состоит из моста на резисторах RK1, R9 и диода оптопары DA3. Повышение напряжения на выходе выпрямителя приводит к проводящему состоянию диода оптопары, который открывает транзистор оптопары с коэффициентом усиления, зависящем от примененного элемента.
Изменение (уменьшение) напряжения на выводе 5 таймера DA1 приводит к изменению частоты выходных импульсов в сторону увеличения, при этом скважность импульсов не изменяется.
Длительность выходного импульса сокращается. Это приведет к уменьшению среднего тока зарядки.
С понижением выходного напряжения происходит обратный процесс.
Конденсатор СЗ устраняет влияние импульсных помех преобразователя на работу генератора. Терморезистор RK1 в цепи стабилизации выходного напряжения при нагреве позволяет воздействовать на выходное напряжение в сторону снижения, терморезистор типа ММТ-1 крепится через изоляционную прокладку на радиатор транзистора.
Цепи стабилизации по току. Стабилизация по току выполнена на аналоге параллельного стабилизатора-таймере DA2. Повышение тока в цепи сток-исток полевого транзистора приводит к падению напряжения на резисторе R10 в цепи истока VT1, которое через резистор R8 поступает на управляющий электрод 1 DA2 аналогового стабилизатора. При пороге напряжения на входе стабилизатора выше 2,5 В таймер DA2 открывается и шунтирует затвор полевого транзистора подачей отрицательного, относительно затвора, напряжения, процесс накопления энергии в трансформаторе прервется. Значение ограниченного тока будет меньше максимально допустимого, что не приведет к повреждению ключевого транзистора. Транзистор закрывается независимо от состояния выхода генератора, ток в цепи истока прекращается.

Порядок сборки
Плата инвертора размером 110x65 мм (рис. 2) в сборе крепится в подходящем по размерам корпусе типа БП-1, на внешней стороне которого крепятся гальванометр, выключатель, предохранитель. Соединение устройства с аккумулятором выполнено многожильным проводом сечением 2 мм. Технологии зарядки и восстановления аккумуляторов см. подробно в .


Регулировка схемы
Подключение устройства к сети следует выполнить через ограничитель в виде сетевой лампочки. Налаживание начинают с проверки напряжений питания микросхемы генератора и транзистора инвертора. Наличие прямоугольных импульсов на выходе 3 DA1 укажет светодиодный индикатор HL1. Вместо нагрузки следует подключить лампочку 12/24 В от автомобиля, свечение лампочки укажет на процесс преобразования тока в инверторе, слабый накал сетевой лампочки подтверждает нормальную работу преобразователя, при слабой нагрузке ток в первичной обмотке не должен превышать 200 мА.
Уровень вторичного напряжения предварительно устанавливается подстроечным резистором R9 при среднем положении движка резистора R1.
Ток заряда зависит от скважности импульса генератора, состояние которого зависит от положения движка резистора R1.
В правом положении движка время заряда конденсатора С2 минимальное, а разряда - максимальное, импульс, поступающий на ключевой транзистор VT1, очень короткий, и средний ток в нагрузке минимальный. В правом положении движка длительность импульса максимальная, как и ток заряда аккумулятора.
Через непродолжительное время включения необходимо проверить тепловой режим радиокомпонентов.
Ввиду невозможности изменения параметров трансформатора, требуемые параметры источника питания можно отрегулировать только изменением частоты генератора (конденсатор С2), скважности импульсов R1, выводов вторичной обмотки трансформатора или полной заменой трансформатора.
По окончанию регулировочных работ и прогонке схемы по времени сетевую и нагрузочную лампочки удаляют, схему восстанавливают и включают под зарядку аккумуляторов.
Следует обратить внимание на режим работы цепей обратных связей по току и напряжению.

Кто не сталкивался в своей практике с необходимостью зарядки батареи и, разочаровавшись в отсутствии зарядного устройства с необходимыми параметрами, вынужден был приобретать новое ЗУ в магазине, либо собирать вновь нужную схему?
Вот и мне неоднократно приходилось решать проблему зарядки различных аккумуляторных батарей, когда под рукой не оказывалось подходящего ЗУ. Приходилось на скорую руку собирать что-то простое, применительно к конкретному аккумулятору.

Ситуация была терпимой до того момента, пока не появилась необходимость в массовой подготовке и, соответственно, зарядке батарей. Понадобилось изготовить несколько универсальных ЗУ - недорогих, работающих в широком диапазоне входных и выходных напряжений и зарядных токов.

Предлагаемые ниже схемы ЗУ были разработаны для зарядки литий-ионных аккумуляторов, но существует возможность зарядки и других типов аккумуляторов и составных батарей (с применением однотипных элементов, далее - АБ).

Все представленные схемы имеют следующие основные параметры:
входное напряжение 15-24 В;
ток заряда (регулируемый) до 4 А;
выходное напряжение (регулируемое) 0,7 - 18 В (при Uвх=19В).

Все схемы были ориентированы на работу с блоками питания от ноутбуков либо на работу с другими БП с выходными напряжениями постоянного тока от 15 до 24 Вольт и построены на широко распространенных компонентах, которые присутствуют на платах старых компьютерных БП, БП прочих устройств, ноутбуков и пр.

Схема ЗУ № 1 (TL494)


ЗУ на схеме 1 является мощным генератором импульсов, работающим в диапазоне от десятков до пары тысяч герц (частота варьировалась при исследованиях), с регулируемой шириной импульсов.
Зарядка АБ производится импульсами тока, ограниченного обратной связью, образованной датчиком тока R10, включенным между общим проводом схемы и истоком ключа на полевом транзисторе VT2 (IRF3205), фильтром R9C2, выводом 1, являющимся «прямым» входом одного из усилителей ошибки микросхемы TL494.

На инверсный вход (вывод 2) этого же усилителя ошибки подается регулируемое посредством переменного резистора PR1, напряжение сравнения с встроенного в микросхему источника опорного напряжения (ИОН - вывод 14), меняющего разность потенциалов между входами усилителя ошибки.
Как только величина напряжения на R10 превысит значение напряжения (установленного переменным резистором PR1) на выводе 2 микросхемы TL494, зарядный импульс тока будет прерван и возобновлен вновь лишь при следующем такте импульсной последовательности, вырабатываемой генератором микросхемы.
Регулируя таким образом ширину импульсов на затворе транзистора VT2, управляем током зарядки АБ.

Транзистор VT1, включенный параллельно затвору мощного ключа, обеспечивает необходимую скорость разрядки затворной емкости последнего, предотвращая «плавное» запирание VT2. При этом амплитуда выходного напряжения при отсутствии АБ (или прочей нагрузки) практически равна входному напряжению питания.

При активной нагрузке выходное напряжение будет определяться током через нагрузку (её сопротивлением), что позволит использовать эту схему в качестве драйвера тока.

При заряде АБ напряжение на выходе ключа (а, значит, и на самой АБ) в течении времени будет стремиться в росте к величине, определяемой входным напряжением (теоретически) и этого, конечно, допустить нельзя, зная, что величина напряжения заряжаемого литиевого аккумулятора должна быть ограничена на уровне 4,1 В (4,2 В). Поэтому в ЗУ применена схема порогового устройства, представляющего из себя триггер Шмитта (здесь и далее - ТШ) на ОУ КР140УД608 (IC1) или на любом другом ОУ.

При достижении необходимого значения напряжения на АБ, при котором потенциалы на прямом и инверсном входах (выводы 3, 2 - соответственно) IC1 сравняются, на выходе ОУ появится высокий логический уровень (практически равный входному напряжению), заставив зажечься светодиод индикации окончания зарядки HL2 и светодиод оптрона VH1 который откроет собственный транзистор, блокирующий подачу импульсов на выход U1. Ключ на VT2 закроется, заряд АБ прекратится.

По окончании заряда АБ он начнет разряжаться через встроенный в VT2 обратный диод, который окажется прямовключенным по отношению к АБ и ток разряда составит приблизительно 15-25 мА с учетом разряда кроме того через элементы схемы ТШ. Если это обстоятельство кому-то покажется критичным, в разрыв между стоком и отрицательным выводом АБ следует поставить мощный диод (лучше с малым прямым падением напряжения).

Гистерезис ТШ в этом варианте ЗУ выбран таким, что заряд вновь начнется при понижении величины напряжения на АБ до 3,9 В.

Это ЗУ можно использовать и для заряда последовательно соединенных литиевых (и не только) АБ. Достаточно откалибровать с помощью переменного резистора PR3 необходимый порог срабатывания.
Так, например, ЗУ, собранный по схеме 1, функционирует с трехсекционной последовательной АБ от ноутбука, состоящей из сдвоенных элементов, которая была смонтирована взамен никель-кадмиевой АБ шуруповерта.
БП от ноутбука (19В/4,7А) подключен к ЗУ, собранному в штатном корпусе ЗУ шуруповерта взамен оригинальной схемы. Зарядный ток «новой» АБ составляет 2 А. При этом транзистор VT2, работая без радиатора нагревается до температуры 40-42 С в максимуме.
ЗУ отключается, естественно, при достижении напряжения на АБ=12,3В.

Гистерезис ТШ при изменении порога срабатывания остается прежним в ПРОЦЕНТНОМ отношении. Т.е., если при напряжении отключения 4,1 В, повторное включение ЗУ происходило при снижении напряжения 3,9 В, то в данном случае повторное включение ЗУ происходит при снижении напряжения на АБ до 11,7 В. Но при необходимости глубину гистерезиса можно изменить.

Калибровка порога и гистерезиса зарядного устройства

Калибровка происходит при использовании внешнего регулятора напряжения (лабораторного БП).
Выставляется верхний порог срабатывания ТШ.
1. Отсоединяем верхний вывод PR3 от схемы ЗУ.
2. Подключаем «минус» лабораторного БП (далее везде ЛБП) к минусовой клемме для АБ (самой АБ в схеме во время настройки быть не должно), «плюс» ЛБП - к плюсовой клемме для АБ.
3. Включаем ЗУ и ЛБП и выставляем необходимое напряжение (12,3 В, например).
4. Если горит индикация окончания заряда, вращаем движок PR3 вниз (по схеме) до гашения индикации (HL2).
5. Медленно вращаем движок PR3 вверх (по схеме) до зажигания индикации.
6. Медленно снижаем уровень напряжения на выходе ЛБП и отслеживаем значение, при котором индикация вновь погаснет.
7. Проверяем уровень срабатывания верхнего порога еще раз. Хорошо. Можно настроить гистерезис, если не устроил уровень напряжения, включающий ЗУ.
8. Если гистерезис слишком глубок (включение ЗУ происходит при слишком низком уровне напряжения - ниже, например, уровня разряда АБ, выкручиваем движок PR4 влево (по схеме) или наоборот, - при недостаточной глубине гистерезиса, - вправо (по схеме). При изменении глубины гистерезиса уровень порога может сместиться на пару десятых долей вольта.
9. Сделайте контрольный прогон, поднимая и опуская уровень напряжения на выходе ЛБП.

Настройка токового режима еще проще.
1. Отключаем пороговое устройство любыми доступными (но безопасными) способами: например, «посадив» движок PR3 на общий провод устройства или «закорачивая» светодиод оптрона.
2. Вместо АБ подключаем к выходу ЗУ нагрузку в виде 12-вольтовой лампочки (например, я использовал для настройки пару 12V ламп на 20 Вт).
3. Амперметр включаем в разрыв любого из проводов питания на входе ЗУ.
4. Устанавливаем на минимум движок PR1 (максимально влево по схеме).
5. Включаем ЗУ. Плавно вращаем ручку регулировки PR1 в сторону роста тока до получения необходимого значения.
Можете попробовать поменять сопротивление нагрузки в сторону меньших значений ее сопротивления, присоединив параллельно, скажем, ещё одну такую же лампу или даже «закоротить» выход ЗУ. Ток при этом не должен измениться значительно.

В процессе испытаний устройства выяснилось, что частоты в диапазоне 100-700 Гц оказались оптимальными для этой схемы при условии использования IRF3205, IRF3710 (минимальный нагрев). Так как TL494 используется неполно в этой схеме, свободный усилитель ошибки микросхемы можно использовать, например, для работы с датчиком температуры.

Следует иметь в виду и то, что при неправильной компоновке даже правильно собранное импульсное устройство будет работать некорректно. Поэтому не следует пренебрегать опытом сборки силовых импульсных устройств, описанном в литературе неоднократно, а именно: все одноименные «силовые» соединения следует располагать на кратчайшем расстоянии относительно друг друга (в идеале - в одной точке). Так, например, точки соединения такие, как коллектор VT1, выводы резисторов R6, R10 (точки соединения с общим проводом схемы), вывод 7 U1 - следует объединить практически в одной точке либо посредством прямого короткого и широкого проводника (шины). То же касается и стока VT2, вывод которого следует «повесить» непосредственно на клемму "-" АБ. Выводы IC1 также должны находиться в непосредственной «электрической» близости к клеммам АБ.

Схема ЗУ № 2 (TL494)


Схема 2 не сильно отличается от схемы 1, но если предыдущая версия ЗУ была придумана для работы с АБ шуруповерта, то ЗУ на схеме 2 задумывалось, как универсальное, малогабаритное (без лишних элементов настройки), рассчитанное для работы как с составными, последовательно включенными элементами числом до 3-х, так и с одиночными.

Как видно, для быстрой смены токового режима и работы с разным количеством последовательно соединенных элементов, введены фиксированные настройки с подстроечными резисторами PR1-PR3 (установка тока), PR5-PR7 (установка порога окончания зарядки для разного количества элементов) и переключателей SA1 (выбор тока зарядки) и SA2 (выбор количества заряжаемых элементов АБ).
Переключатели имеют по два направления, где вторые их секции переключают светодиоды индикации выбора режима.

Ещё одно отличие от предыдущего устройства - использование второго усилителя ошибки TL494 в качестве порогового элемента (включенного по схеме ТШ), определяющего окончание зарядки АБ.

Ну, и, конечно, в качестве ключа использован транзистор р-проводимости, что упростило полное использование TL494 без применения дополнительных компонентов.

Методика настройки порогов окончания зарядки и токовых режимов такая же , как и для настройки предыдущей версии ЗУ. Разумеется, для разного количества элементов, порог срабатывания будет меняться кратно.

При испытании этой схемы был замечен более сильный нагрев ключа на транзисторе VT2 (при макетировании использую транзисторы без радиатора). По этой причине следует использовать другой транзистор (которого у меня просто не оказалось) соответствующей проводимости, но с лучшими токовыми параметрами и меньшим сопротивлением открытого канала, либо удвоить количество указанных в схеме транзисторов, включив их параллельно с раздельными затворными резисторами.

Использование указанных транзисторов (в «одиночном» варианте) не критично в большинстве случаев, но в данном случае размещение компонентов устройства планируется в малогабаритном корпусе с использованием радиаторов малого размера или вовсе без радиаторов.

Схема ЗУ № 3 (TL494)


В ЗУ на схеме 3 добавлено автоматическое отключение АБ от ЗУ с переключением на нагрузку. Это удобно для проверки и исследования неизвестных АБ. Гистерезис ТШ для работы с разрядом АБ следует увеличить до нижнего порога (на включение ЗУ), равного полному разряду АБ (2,8-3,0 В).

Схема ЗУ № 3а (TL494)


Схема 3а - как вариант схемы 3.

Схема ЗУ № 4 (TL494)


ЗУ на схеме 4 не сложнее предыдущих устройств, но отличие от предыдущих схем в том, что АБ здесь заряжается постоянным током, а само ЗУ является стабилизированным регулятором тока и напряжения и может быть использовано в качестве модуля лабораторного источника питания, классически построенного по «даташитовским» канонам.

Такой модуль всегда пригодится для стендовых испытаний как АБ, так и прочих устройств. Имеет смысл использование встроенных приборов (вольтметр, амперметр). Формулы расчета накопительных и помеховых дросселей описаны в литературе. Скажу лишь, что использовал готовые различные дроссели (с диапазоном указанных индуктивностей) при испытаниях, экспериментируя с частотой ШИМ от 20 до 90 кГц. Особой разницы в работе регулятора (в диапазоне выходных напряжений 2-18 В и токов 0-4 А) не заметил: незначительные изменения в нагреве ключа (без радиатора) меня вполне устраивали. КПД, однако, выше при использовании меньших индуктивностей.
Лучше всего регулятор работал с двумя последовательно соединенными дросселями 22 мкГн в квадратных броневых сердечниках от преобразователей, интегрированных в материнские платы ноутбуков.

Схема ЗУ № 5 (MC34063)


На схеме 5 вариант ШИ-регулятора с регулировкой тока и напряжения выполнена на микросхеме ШИМ/ЧИМ MC34063 с «довеском» на ОУ CA3130 (возможно использование прочих ОУ), с помощью которого осуществляется регулировка и стабилизация тока.
Такая модификация несколько расширила возможности MC34063 в отличии от классического включения микросхемы позволив реализовать функцию плавной регулировки тока.

Схема ЗУ № 6 (UC3843)


На схеме 6 - вариант ШИ-регулятора выполнен на микросхеме UC3843 (U1), ОУ CA3130 (IC1), оптроне LTV817. Регулировка тока в этом варианте ЗУ осуществляется с помощью переменного резистора PR1 по входу токового усилителя микросхемы U1, выходное напряжение регулируется с помощью PR2 по инвертирующему входу IC1.
На «прямом» входе ОУ присутствует «обратное» опорное напряжение. Т.е., регулирование производится относительно "+" питания.

В схемах 5 и 6, при экспериментах использовались те же наборы компонентов (включая дроссели). По результатам испытаний все перечисленные схемы мало в чем уступают друг другу в заявленном диапазоне параметров (частота/ток/напряжение). Поэтому схема с меньшим количеством компонентов предпочтительнее для повторения.

Схема ЗУ № 7 (TL494)


ЗУ на схеме 7 задумывалось, как стендовое устройство с максимальной функциональностью, потому и по объему схемы и по количеству регулировок ограничений не было. Данный вариант ЗУ так же выполнен на базе ШИ-регулятора тока и напряжения, как и вариант на схеме 4.
В схему введены дополнительно режимы.
1. «Калибровка - заряд» - для предварительной установки порогов напряжения окончания и повтора зарядки от дополнительного аналогового регулятора.
2. «Сброс» - для сброса ЗУ в режим заряда.
3. «Ток - буфер» - для перевода регулятора в токовый или буферный (ограничение выходного напряжения регулятора в совместном питании устройства напряжением АБ и регулятора) режим заряда.

Применено реле для коммутации батареи из режима «заряд» в режим «нагрузка».

Работа с ЗУ аналогична работе с предыдущими устройствами. Калибровка осуществляется переводом тумблера в режим «калибровка». При этом контакт тумблера S1 подключает пороговое устройство и вольтметр к выходу интегрального регулятора IC2. Выставив необходимое напряжение для предстоящей зарядки конкретной АБ на выходе IC2, с помощью PR3 (плавно вращая) добиваются зажигания светодиода HL2 и, соответственно, срабатывания реле К1. Уменьшая напряжение на выходе IC2, добиваются гашения HL2. В обоих случаях контроль осуществляется встроенным вольтметром. После установки параметров срабатывания ПУ, тумблер переводится в режим заряда.

Схема № 8

Применения калибровочного источника напряжения можно избежать, используя для калибровки собственно ЗУ. В этом случае следует отвязать выход ТШ от ШИ-регулятора, предотвратив его выключение при окончании заряда АБ, определяемым параметрами ТШ. АБ так или иначе будет отключена от ЗУ контактами реле К1. Изменения для этого случая показаны на схеме 8.


В режиме калибровки тумблер S1 отключает реле от плюса источника питания для предотвращения неуместных срабатываний. При этом работает индикация срабатывания ТШ.
Тумблер S2 осуществляет (при необходимости) принудительное включение реле К1 (только при отключенном режиме калибровки). Контакт К1.2 необходим для смены полярности амперметра при переключении батареи на нагрузку.
Таким образом однополярный амперметр будет контролировать и ток нагрузки. При наличии двухполярного прибора, этот контакт можно исключить.

Конструкция зарядного устройства

В конструкциях желательно в качестве переменных и подстроечных резисторов использование многооборотных потенциометров во избежании мучений при установке необходимых параметров.


Варианты конструктива приведены на фото. Схемы распаивались на перфорированных макетных платах экспромтом. Вся начинка смонтирована в корпусах от ноутбучных БП.
В конструкциях использовались (они же использовались и в качестве амперметров после небольшой доработки).
На корпусах смонтированы гнезда для внешнего подключения АБ, нагрузки, джек для подключения внешнего БП (от ноутбука).

Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов.

Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Читательское голосование

Статью одобрили 77 читателей.

Для участия в голосовании зарегистрируйтесь и войдите на сайт с вашими логином и паролем.
Инверторы двухтактные используются как источники питания сетевого напряжения с импульсным преобразованием. Их отличие от трансформаторных источники питания малый вес и маленькие габариты.
Недочетом импульсных инверторов считается выход из строя главных транзисторов при появлении сквозных токов во время их коммутации. Избежать прохождения сквозных токов возможно при внедрении меж импульсами управления главными транзисторами пауз, продолжительность которых достаточна для полного переключения (открывания 1-го и закрывания другого) транзисторов. В обычных двухтактных инверторах достигнуть этого трудно, но можно применять генераторы импульсов на цифровых (часовых) микросхемах.
В предоставленном инверторе (рис.1) используется счетчик-делитель К176ИЕ12, содержащий внутренний генератор и 2 делителя частоты (с коэффициентом деления 60 и 15-разрядный). Микросхема специально разработана для применения в электронных часах. Выходная частота генератора устанавливается наружной
RC- цепочкой R4-R5-C2 с возможностью изменения в широких пределах.
При частоте ее внутреннего генератора 6 МГц на выходах Т1 и Т4
DD1 создаются импульсы частотой 23 кГц со скважностью 4. Они смещены меж собой по фазе на четверть периода. Частоту импульсов можно видоизменять в любую сторону, чтоб, исходя из магнитной проницаемости сердечника трансформатора Т1, достигнуть оптимальных характеристик инвертора.
Счетчик
DD1 становится при подаче высокого уровня на ввод R (вывод 9) и R1 (вывод 5) микросхемы. Выход Q15 употребляется для регистрации счета и нагружен светодиодом HL1. Вид корпуса К176ИЕ12 - 238.16-1 ( DIP-16).
Во время работы импульс генератора с выхода Т2 DD1 открывает верхний ключ VT1, 2- ой импульс счетчика пропускается, т.е. создается пауза, 3-ий импульс с выхода Т4 раскрывает нижний ключ VT2, 4- ый импульс снова пропускается, и цикл повторяется. Во время открытого состояния ключей энергия из первичной обмотки импульсного трансчформатора Т1 передается во вторичную обмотку и дальше через выпрямитель VD6 и фильтр L1-C7-C11 - в нагрузку. Продолжительность пауз меж импульсами подбирается таковым образом, чтоб их было достаточно для полного прекращения тока через главные транзисторы.


Устройство состоит из:
- сетевого фильтра помех С8-Т2-С12;
- генератора импульсов со счетчиком на цифровой микросхеме
DD1;
- двухтактного полу мостового усилителя на полевых транзисторах VT1,VT2;
- параметрического источника питания VD1-R10-C3-C4;
- цепи стабилизации выходного напряжения с оптронной развязкой первичного и вторичного напряжения (на VU1) и усилителя сигнала рассогласования (на параллельном стабилизаторе DA1);
- выпрямителя выходного напряжения на диодной сборке VD6;
- выходного фильтра L1-C7-C11.


Резисторы R7 и R8 обеспечивают защиту затворов полевых транзисторов от лишних токов заряда входных емкостей. Быстродействующие диоды VD3 и VD4, поставленные параллельно каналам сток-исток транзисторов VT1 и VT2, оберегают каналы от импульсных токов обратной полярности, появляющихся в обмотках трансформатора Т1. Конденсатор С6 меж стоками транзисторов ускоряет их переключение. Конденсаторы С9 и С10 понижают степень помех при переключении диодов выпрямительного моста VD6.
Электронная защита прибора исполнена по цепи отрицательной обратной связи с главным усилителем на параллельном стабилизаторе DA1, нагруженном оптопарой VU1. При выходном напряжении в пределах нормы параллельный стабилизатор DA1 прикрыт, а светодиод оптопары VU1 открыт. Транзистор оптопары в открытом состоянии шунтирует вход R1 DD1, что разрешает работу счетчиков микросхемы DD1.
Поднятие выходного напряжения вызывает рост уровня на управляющем электроде 1 DA1. параллельный стабилизатор открывается и закорачивает светодиод оптопары VU1, он отключается. Фототранзистор VU1 закрывается, напряжение на входе R1 DD1 растет, что воспрещает работу счетчика. Возобновление работы DD1 происходит при понижении выходного напряжения до установлен-
ного значения. Таковым образом осуществляется защита прибора от перегрузки и стабилизация выходного напряжения.
В схеме можно применять фабричные трансформаторы от двухтактных преобразователей блоков питания компов. Трансформатор Т1 (159 Вт) выполнен на сердечнике К40х25х11. Первичная обмотка содержит 2
x35 витков провода ПЭВ 00,62 мм, вторичная - 2 x7 витков жгута из 4-х проводов МГТФ сечением 0,31 мм2. Дроссель L1 исполнен на кольцевомсердечникеК12х5х5 из

Завалялся у меня тороидальный трансформатор на 30 ватт, с выходным напряжением 20 вольт. Решил сделать на его основе приличиное зарядное устройство и вот что получилось. Максимальный ток зарядки получился 1А, но его легко можно увеличить, если поставить более мощный источник напряжения - трансформатор на 100 ватт и более. Принципиальная схема в своей основе имеет ШИМ-генератор - микросхему-таймер NE555 (КР1006ВИ1), импульсы с которой поступают на затвор полевого транзистора, коммутирующего нагрузку - аккумулятор. Другой мощный транзистор отключает АКБ при аварийных ситуациях.

Схема выгодно отличается от других тем, что имеет простую и надёжную защиту от короткого замыкания выходных щупов и переполюсовки, при этом отключает заряд и включает светодиод. Так как светодиод немного подсвечивал, (тот который защита) он у меня оказался на 1.8 вольт, я решил что бы не мучится, не подбирать под разные светодиоды, поставить подстроечник.

Сделал по быстрому, просто взял и объединил две платы - генератор и защита. Зарядное устройство собрано и успешно проверено - работает великолепно! Для наглядности, снабдил зарядку ампер- и вольтметром, чтобы отслеживать процесс заряда в любой момент.

В схему можно ставить любой N-канальный полевой транзистор на нужный ток. Аккумулятор, подключаемый к ЗУ, может быть никель-кадмиевый, свинцовый гелевый, никель металл-гидридный или литий ионный. Однако в последнем случае учтите, что на нём не должен быть контроллер (как в АКБ от мобильного телефона), так как заряд происходит импульсами большого напряжения. С другой стороны такой метод заряда приветствуется, ведь эти импульсы разрушают окисел, покрывающий внутренние пластины аккумулятора, производя десульфатацию. В общем получилась простая, надёжная и функциональная схема зарядки, под многие виды аккумуляторов.