Строительный портал - Винтажная Москва
Поиск по сайту

Измерение сопротивления изоляции кабеля. Нормы сопротивления изоляции для кабельной продукции Сопротивление изоляции жил кабеля

Приступая к измерению сопротивления изоляции кабеля важно учесть температурные показатели окружающей среды. Почему так?

Это связано с тем, что при минусовой температуре в кабельной массе молекулы воды будут находиться в замерзшем состоянии, фактически в виде льда. А как известно лед является диэлектриком и не проводит ток.

Так что при определении сопротивления изоляции при минусовой температуры именно эти частички замерзшей воды не будут обнаружены.

Для расчёта сопротивления проводника вы можете воспользоваться калькулятором расчета сопротивления проводника .

Приборы и средства измерения сопротивления изоляции кабеля.

Следующим пунктом при проведении измерения сопротивления изоляции кабельных линий, будут сами измерительные приборы.

Наиболее популярным прибором для измерения сопротивления изоляции у работников нашей электролаборатории является прибор MIC-2500.

С помощью этого прибора произведенного фирмой Sonel можно не только снять замеры показателей сопротивления кабельных линий, шнуров, проводов, электрооборудования (трансформаторы, выключатели, двигатели и т.п), но и определить замер уровня изношенности и уровня увлажненности изоляции.

Стоит отметить, что именно прибор MIC-2500 включен в государственный реестр разрешенных для измерения сопротивления изоляции.

Согласно инструкциям прибор MIC-2500 должен проходить ежегодную государственную поверку. После процедуры поверки на прибор наносят голограмму и штамп, которые подтверждают прохождение поверки. В штампе указывается информация о дате плановой поверки и серийный номер измерительного прибора.

К работе с измерениями сопротивления изоляции допускаются только исправные и поверенные приборы.

Нормы сопротивления изоляции для различных кабелей.

Для определения норма сопротивления изоляции кабелей , нужно провести их классификацию. Кабели по функциональному назначению разделяются на:

  • выше 1000 (В) - высоковольтные силовые
  • ниже 1000 (В) - низковольтные силовые
  • контрольные кабели - (цепи защиты и автоматики, вторичные цепи РУ, цепи управления, цепи питания электроприводов выключателей, отделителей, короткозамыкателей и т.п.)

Измерение сопротивления изоляции, как для высоковольтных кабелей, так и для низковольтных кабелей осуществляется мегаомметром на напряжение 2500 (В). А контрольные кабели измеряются при напряжении 500-2500 (В).

Каждый кабель имеет свои нормы сопротивления изоляции. Согласно ПТЭЭП и ПУЭ.

Высоковольтные силовые кабели выше 1000 (В) — сопротивление изоляции должно достигать показателя не ниже 10 (МОм)

Низковольтные силовые кабели ниже 1000 (В) — сопротивление изоляции не должно достигать отметки ниже 0,5 (МОм)

Контрольные кабели — сопротивление изоляции не должно опускаться ниже 1 (МОм)

Алгоритм измерения сопротивления изоляции высоковольтных силовых кабелей.

Чтобы понять и упростить процесс выполнения работ по измерению сопротивления изоляции в высоковольтных силовых кабелях , рекомендуем порядок действий при замерах.

1. Проверяем отсутствие напряжения на кабеле при помощи указателя высокого напряжения

2. Ставим испытательное заземление с использованием специальных зажимов ка кабельные жилы с той стороны, где будем проводить измерение.

3. На другой стороне кабеля оставляем свободные жилы, при этом разводим их на достаточное расстояние друг от друга.

4. Размещаем предупреждающие информационные плакаты. Желательно поставить на другой стороне человека для наблюдения за безопасностью во время измерения мегаомметром.

5. Каждую жилу измеряем 1 минуту мегаомметром на 2500 (В) для получения показателей сопротивления изоляции силового кабеля.

Например, замеряем сопротивление изоляции на жиле фазы «С». При этом помещаем заземление на жилы фаз «В» и «А». Один конец мегаомметра подключаем к заземлению, или проще сказать к «земле». Второй конец — к жиле фазы «С».

Наглядно это выглядит так:

6. Данные измерений в процессе работы записываем в блокнот.

Методика измерения сопротивления изоляции низковольтных силовых кабелей.

Что касается измерения изоляции низковольтных силовых кабелей , то методика измерения незначительно отличается от описанной выше.

Аналогично:

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, предназначенных для работ в электроустановках.

2. С другой стороны кабеля, жилы разводим их на достаточное расстояние друг от друга и оставляем свободными.

3. Размещаем запрещающие и предупреждающие плакаты. Оставляем с другой стороны человека для наблюдения за безопасностью.

4. Измерение сопротивления изоляции низковольтного силового кабеля проводим мегаомметром на 2500 (В) по 1 минуте:

  • между фазными жилами (А-В, В-С, А-С)
  • между фазными жилами и нулем (А-N, В-N, С-N)
  • между фазными жилами и землей (А-РЕ, В-РЕ, С-РЕ), если кабель пятижильный
  • между нулем и землей (N-PE), предварительно отключив ноль от нулевой шинки

6. Полученные показатели измерений сопротивления изоляции фиксируем в блокноте.

Методика измерения сопротивления изоляции контрольных кабелей.

Особенностью измерения сопротивления изоляции контрольных кабелей является то, что жилы кабеля можно не отсоединять от схемы и делать замеры вместе с электрооборудованием.

Измерение сопротивления изоляции контрольного кабеля выполняется по уже знакомому алгоритму.

1. Проверяем отсутствие напряжения на кабеле с помощью защитных средств, которые предназначены для работ в электроустановках.

2. Измеряем сопротивления изоляции контрольного кабеля мегаомметром на 500-2500 (В) в такой последовательности.

Сначала совершаем подключение одного вывода мегаомметра к испытуемой жиле. Остальные жилы контрольного кабеля соединяем между собой и на землю. Ко второй выводу мегаомметра подключаем либо землю, либо любую другую не испытуемую жилу.

1 минуту производим замер испытуемой жилы. Потом эту жилу возвращаем к остальным жилам кабеля и поочередно измеряем каждую жилу.

3. Все полученные показатели измерения сопротивления изоляции контрольного кабеля фиксируем в блокнот.

Протокол измерения сопротивления изоляции кабеля.

Все вышеперечисленные электрические измерения, после получения данных сопротивления изоляции кабеля необходимо подвергнуть сравнительному анализу с требованиями и нормами ПУЭ и ПТЭЭП. На основании сравнения необходимо сформулировать вывод-заключение о пригодности кабеля к последующей эксплуатации и составить протокол измерения сопротивления изоляции.

Добавить сайт в закладки

Методика измерения сопротивления изоляции

Целью настоящей методики является обеспечение качественного и безопасного проведения работ при производстве электролабораторией (далее ЭЛ) испытаний (измерений).

Методика составлена на основании:

  • ГОСТ Р 8.563-96 «Методики выполнения измерений»;
  • межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001;
  • документации заводов-изготовителей приборов, используемых в проведении работ.

Назначение

Назначение методики - описание процедур по организации, выполнению и оформлению проводимых ЭЛ работ по измерению сопротивления изоляции.

Наименование и характеристика измеряемой величины

Измеряемая величина - сопротивление изоляции. Сопротивление изоляции постоянному току является основным показателем состояния изоляции и его измерение является неотъемлемой частью испытаний всех видов электрооборудования и электроцепей.

Состав используемых при измерении приборов

Сопротивление изоляции измеряется мегомметром. В настоящее время наиболее распространены мегомметры типа М-4100, ЭСО202/2Г, MIC-1000, MIC-2500.

Описание мегомметров

Мегомметр - прибор, состоящий из источника напряжения (постоянного или переменного генератора с выпрямителем тока) и измерительного механизма.

Мегомметры подразделяются по номинальному рабочему напряжению до 1000 В и до 2500 В.

Мегомметры комплектуются гибкими медными проводами длиной до 2-3 м с сопротивлением изоляции не менее 100 МОм. Концы проводов, присоединяемые к мегомметру, должны иметь оконцеватели, а противоположные - зажимы типа «крокодил» с изолированными ручками.

Порядок проведения измерений

Порядок проведения измерений мегомметрами типа М-4100 и ЭСО202/2Г. Перед началом проведения измерений необходимо:

  1. Перед началом проведения измерения мегомметр должен быть подвергнут контрольной проверке, которая заключается в проверке показаний прибора при разомкнутых проводах (стрелка прибора должна находиться у отметки бесконечность - ?) и замкнутых проводах (стрелка прибора должна находиться на отметке 0).
  2. Убедиться, что на испытуемом кабеле нет напряжения (проверять отсутствие напряжения необходимо испытанным указателем напряжения, исправность которого должна быть проверена на заведомо находящихся под напряжением частях электроустановки - п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001).
  3. Заземлить токоведущие жилы испытываемого кабеля (заземление с токоведущих частей можно снимать только после подключения мегомметра).

Подключаемые провода мегомметров должны иметь зажимы с изолированными ручками, в электроустановках выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.

При работе с мегомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается.

Как правило, измеряют сопротивление изоляции каждой фазы кабеля относительно остальных заземленных фаз. Если измерения по этому сокращенному варианту дадут неудовлетворительный результат, то необходимо измерить сопротивление изоляции между каждыми двумя фазами и каждой фазой относительно земли.

При измерениях на кабелях выше 1000 В (когда результаты измерений могут быть искажены точками утечек по поверхности изоляции) на изоляцию объекта измерения (концевую воронку и т.д.) накладывают электрод (экранные кольца), присоединенный к зажиму «Э» (экран).

При измерениях сопротивления изоляции кабелей на напряжение до 1000 В с нулевыми жилами необходимо помнить следующее:

  • нулевые рабочие и защитные проводники должны иметь изоляцию, равную изоляции фазных проводников;
  • как со стороны источника питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей.

Схема измерения сопротивления изоляции: а - электродвигателя; 6 - кабеля; 1 - клеммный щиток; 2 - выводы катуш ки; 3 - металлическая защита (оболочка); 4 - изоляция; 5 - экран; 6 - токопроводящая жила.

Измерение (снятие показаний) следует производить при устойчивом положении стрелки прибора. Для этого нужно вращать ручку прибора со скоростью 120 об/мин.

Сопротивление изоляции определяется показанием стрелки прибора через 15 сек и 60 сек после начала вращения. Если определения коэффициента абсорбции кабеля не требуется, отсчет показаний производится после успокоения стрелки, но не ранее 60 сек от начала вращения.

При неправильно выбранном пределе измерений необходимо:

  • снять заряд с испытуемой фазы, наложив заземление;
  • переключить предел и повторить измерение на новом пределе.

При наложении и снятии заземления необходимо пользоваться диэлектрическими перчатками

По окончании измерений, прежде чем отсоединять концы прибора, необходимо снять накопленный заряд путем наложения заземления.

Измерение сопротивления изоляции сетей освещения проводится мегомметром на напряжение 1000 В и включает в себя:

  1. Измерение сопротивления изоляции магистральных линий - от сборок 0,4 кВ (ГРЩ, ВРУ) до автоматических выключателей распределительных щитов (ЩЭ) или групповых (в зависимости от схемы);
  2. Измерение сопротивления изоляции от распределительных (этажных) щитов до групповых щитков местного управления (квартирных).
  3. Измерение сопротивления изоляции сети освещения от автоматических выключателей (предохранителей) местных, групповых щитков управления (ЩК) до светильников (включая изоляцию самого светильника). При этом в сетях освещения в светильниках с лампами накаливания измерение сопротивления изоляции производится при снятом напряжении, включенных выключателях, снятых предохранителях (или отключенных выключателях), отсоединенных нулевых рабочих и защитных проводах, отключенных электроприемниках и вывернутых электролампах. В сетях освещения с газоразрядными лампами производить измерение можно как с установленными лампами, так и без них, но со снятыми стартерами.
  4. Величина сопротивления изоляции на каждом участке сети освещения, начиная от автомата (предохранителя) щита и включая проводку светильника, должна быть не менее 0,5 МОм.

Обработка и оформление результатов измерений

Данные по использованным в процессе измерительных работ приборам, а также результаты измерений заносятся в протоколы.

Требования к безопасному проведению работ

Таблица 1. Допустимые расстояния до токоведущих частей, находящихся под напряжением.

В соответствии с главой 12 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001» работники ЭЛ (как работники организаций, направляемые для выполнения работ в действующих, строящихся, технически перевооружаемых, реконструируемых электроустановках и не состоящие в штате организаций - владельцев электроустановки) относятся к командированному персоналу.

Командируемые работники должны иметь удостоверения установленной формы о проверке знаний норм и правил работы в электроустановках с отметкой о группе, присвоенной комиссией командирующей организации. Командирующая организация несет ответственность за соответствие присвоенных командированным работникам групп, а также за соблюдение персоналом нормативных документов по безопасному выполнению работ.

Организация работ командировочного персонала предусматривает прохождение следующих процедур выполняемых до начала работ:

  • извещение организации-владельца электроустановки письмом о цели командировки, а также составе и квалификации командировочного персонала ЭЛ;
  • определение и предоставление организацией-владельцем командированным работникам права работы в действующих электроустановках (в качестве выдающих наряд, ответственных руководителей и производителей работ, членов бригады);
  • проведение с командированным персоналом по его прибытии вводного и первичного инструктажей по электробезопасности;
  • ознакомление командированного персонала с электрической схемой и особенностями электроустановки, в которой ему предстоит работать (причем работник, которому предоставляется право исполнять обязанности производителя работ, должен пройти инструктаж по схеме электроснабжения электроустановки);
  • проведение работниками организации-владельца подготовки рабочего места и допуск командированного персонала к работам.

Организация, в электроустановках которой производятся работы командированным персоналом, несет ответственность за выполнение предусмотренных мер безопасности и допуск к работам.

Работы выполняются на основании наряда-допуска, распоряжения или в порядке текущей эксплуатации в соответствии с требованиями главы 5 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001». Кроме того, при проведении испытаний и измерений следует:

  1. Руководствоваться указаниями паспортов (инструкций по эксплуатации) используемых приборов и инструкций по технике безопасности (действующими на предприятии, где выполняются измерения), а также дополнительными требованиями по безопасности, определенными в нарядах-допусках, распоряжениях, инструктажах.
  2. Проверять отсутствие напряжения (проверять отсутствие напряжения необходимо испытанным указателем напряжения, исправность которого должна быть проверена на заведомо находящихся под напряжением частях электроустановки - п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001). Отсутствие напряжения следует проверять как между всеми фазами, так и между фазой и землей. Причем в электроустановках с системой TN-C следует сделать не менее шести замеров, а в электроустановках с системой TN-S - не менее десяти замеров.
  3. Производить подключение и отключение всех при снятом напряжении.
  4. Обеспечивать применение защитных средств и инструмента с изолирующими рукоятками, испытанных согласно «Инструкции по применению и испытанию средств защиты, используемых в электроустановках», утвержденной приказом Минэнерго России от 30.06.2003 г. за № 261.

Производящая работы бригада должна состоять не менее чем из двух человек, в том числе производитель работ с группой по электробезопасности не ниже IV и член бригады с группой по электробезопасности не ниже III. При проведении измерений запрещается приближаться к токоведущим частям на расстояния менее указанных в таблице 1.

На основе статьи "Measurement of insulation resistance (IR) - 2", http://electrical-engineering-portal.com

1. Значения сопротивления изоляции для электрического оборудования и систем

(Стандарт PEARL / NETA MTS-1997 Таблица 10.1)

Номинальное максимальное напряжение оборудования

Класс мегомметра

Правило 1 МОм для значения сопротивления изоляции оборудования

В зависимости от номинального напряжения оборудования:

< 1 кВ = не менее 1 МОм
> 1 кВ = 1 МОм на 1 кВ

В соответствии с правилами IE Rules - 1956

Когда в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 1000 В, сопротивление изоляции высоковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). Средневольтные и низковольтные установки - Если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards). В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ.

Средневольтные и низковольтные установки - если в течение одной минуты между каждым из находящихся под напряжением проводников и землей имеется напряжение 500 В, сопротивление изоляции средневольтных и низковольтных установок должно быть не ниже 1 МОм или соответствовать указаниям Бюро по стандартизации Индии (Bureau of Indian Standards).

В соответствии со спецификациями CBIP допустимые значения составляют 2 МОм на кВ

2. Значение сопротивления изоляции для трансформатора

Тестирование сопротивления изоляции необходимо для определения сопротивления изоляции индивидуальных обмоток относительно земли или между индивидуальными обмотками. При таком тестировании сопротивление изоляции обычно либо измеряется непосредственно в МОм, либо рассчитывается, исходя из прикладываемого напряжения и величины тока утечки.

При измерении сопротивления изоляции рекомендуется всегда заземлять корпус (и сердечник). Замкните накоротко каждую обмотку трансформатора на выводах проходного изолятора. После этого проведите измерение сопротивления между каждой обмоткой и всеми остальными заземленными обмотками.


Тестирование сопротивления изоляции: между высоковольтной стороной и землей, и между высоковольтной и низковольтной сторонами.
HV1 (2, 3) — Низковольтный 1 (2, 3); LV1 (2, 3) — Высоковольтный 1 (2, 3))

При измерении сопротивления изоляции никогда не оставляйте незаземленными обмотки трансформатора. Для измерения сопротивления заземленной обмотки необходимо снять с нее глухое заземление. Если снять заземление невозможно, как в случае некоторых обмоток с глухозаземленными нейтралями, сопротивление изоляции такой обмотки будет невозможно измерить. Считайте их частью заземленного участка цепи.

Необходимо проводить тестирование между обмотками и между обмоткой и землей (E). На трехфазных трансформаторах необходимо тестировать обмотку (L1, L2, L3) за вычетом заземления для трансформаторов с соединением «треугольник» или обмотку (L1, L2, L3) с заземлением (Е) и нейтралью (N) для трансформаторов с соединением «звезда».

Значение сопротивления изоляции для трансформатора

Где С = 1,5 для маслозаполненных трансформаторов с масляным баком, 30 для маслозаполненных трансформаторов без масляного бака или для сухих трансформаторов.

Коэффициент поправки на температуру (относительно 20°C)

Пример для трехфазного трансформатора 1600 КВА, 20 кВ / 400 В :

  • значение сопротивления изоляции на высоковольтной стороне = (1,5 х 20000) / √1600 = 16000 / 40 = 750 МОм при 20°C;
  • значение сопротивления изоляции на низковольтной стороне = (1,5 х 400) / √1600 = 320 / 40 = 15 МОм при 20°C;
  • значение сопротивления изоляции при 30°C = 15 х 1,98 = 29,7 МОм.

Сопротивление изоляции обмотки трансформатора

Значение сопротивления изоляции трансформаторов

Напряжение

Напряжение тестирования (постоянный ток), низковольтная сторона

Напряжение тестирования (постоянный ток), высоковольтная сторона

Минимальное значение сопротивления изоляции

6,6 кВ - 11 кВ

11 кВ - 33 кВ

33 кВ - 66 кВ

66 кВ - 132 кВ

132 кВ - 220 кВ

Проведение измерения сопротивления изоляции трансформатора:

  • отключите трансформатор и отсоедините перемычки и молниеотводы;
  • разрядите межвитковую емкость;
  • полностью очистите все проходные изоляторы;
  • замкните обмотки накоротко;
  • защитите выводы во избежание поверхностной утечки по изоляторам выводов;
  • запишите окружающую температуру;
  • подсоедините испытательные провода (избегайте дополнительных соединений);
  • подайте испытательное напряжение и запишите показания. Значение сопротивления изоляции через 60 секунд после подачи испытательного напряжения принимается в качестве сопротивления изоляции трансформатора при температуре проведения тестирования;
  • вывод нейтрали трансформатора во время тестирования должен быть отсоединен от земли;
  • также во время тестирования должны быть отсоединены все соединения с землей молниеотвода на низковольтной стороне;
  • из-за индуктивных характеристик трансформатора показания сопротивления изоляции необходимо снимать только после стабилизации испытательного тока;
  • не снимайте показания сопротивления, когда трансформатор находится в условиях вакуума.

Подключения трансформатора при проведении тестирования сопротивления изоляции (не меньше 200 МОм)

Трансформатор с двумя обмотками

2. Высоковольтная обмотка - (низковольтная обмотка + земля)
3. Низковольтная обмотка - (высоковольтная обмотка + земля)

Трансформатор с тремя обмотками
1. Высоковольтная обмотка - (низковольтная обмотка + обмотка ответвления + земля)
2. Низковольтная обмотка - (высоковольтная обмотка + обмотка ответвления + земля)
3. (Высоковольтная обмотка + низковольтная обмотка + обмотка ответвления) - земля
4. Обмотка ответвления - (высоковольтная обмотка + низковольтная обмотка + земля)

Автотрансформатор (две обмотки)
1. (Высоковольтная обмотка + низковольтная обмотка) - земля

Автотрансформатор (три обмотки)
1. (Высоковольтная обмотка + низковольтная обмотка) - (обмотка ответвления + земля)
2. (Высоковольтная обмотка + низковольтная обмотка + обмотка ответвления) - земля
3. Обмотка ответвления - (высоковольтная обмотка + низковольтная обмотка + земля)

Для любой изоляции измеренное сопротивление изоляции не должно быть меньше :

  • высоковольтная обмотка - земля 200 МОм;
  • низковольтная обмотка - земля 100 МОм;
  • высоковольтная обмотка - низковольтная обмотка 200 МОм.

Факторы, влияющие на значение сопротивления изоляции трансформатора

На значение сопротивления изоляции трансформаторов влияет следующее:

  • состояние поверхности проходного изолятора вывода;
  • качество масла;
  • качество изоляции обмотки;
  • температура масла;
  • длительность использования и значение испытательного напряжения.

3. Значение сопротивления изоляции для переключателя выходных обмоток

  • сопротивление изоляции между высоковольтной и низковольтной обмотками, а также между обмотками и землей;
  • минимальное значение сопротивления для переключателя выходных обмоток составляет 1000 Ом на один вольт рабочего напряжения.

Для измерения сопротивления обмотки электродвигателя с заземлением (Е) используется тестер изоляции.

  • для номинального напряжения ниже 1 кВ измерение проводится мегомметром на 500 В постоянного тока;
  • для номинального напряжения выше 1 кВ измерение проводится мегомметром на 1000 В постоянного тока;
  • в соответствии с IEEE 43, статья 9.3, следует применять следующую формулу:
    минимальное значение сопротивления изоляции (для вращающейся машины) = (Номинальное напряжение (В) / 1000) +1.


В соответствии со стандартом IEEE 43 1974, 2000

Пример 1: Для трехфазного электродвигателя 11 кВ

  • значение сопротивления изоляции = 11 + 1 = 12 МОм, но в соответствии с IEEE43 должно быть 100 МОм.

Пример 2: Для трехфазного электродвигателя 415 В

  • значение сопротивления изоляции = 0,415 + 1 = 1,41 МОм, но в соответствии с IEEE43 должно быть 5 МОм;
  • в соответствии с IS 732 минимальное значение сопротивления изоляции для электродвигателя = (20 х Напряжение (р-р)) / (1000 + 2 х кВт).

Значение сопротивления изоляции электродвигателя в соответствии с NETA ATS 2007. Раздел 7.15.1

Шильдик электродвигателя (В)

Испытательное напряжение

Минимальное значение сопротивления изоляции

500 В постоянного тока

1000 В постоянного тока

1000 В постоянного тока

1000 В постоянного тока

2500 В постоянного тока

2500 В постоянного тока

2500 В постоянного тока

5000 В постоянного тока

15000 В постоянного тока

Значение сопротивления изоляции погружного электродвигателя

5. Значение сопротивления изоляции для электрических кабелей и проводки

Для тестирования изоляции необходимо отсоединить кабели от панели или оборудования, а также от источника электропитания. Проводку и кабели следует тестировать друг относительно друга (фаза с фазой) с кабелем заземления (Е). Ассоциация IPCEA (Insulated Power Cable Engineers Association) предлагает формулу определения минимальных значений сопротивления изоляции.

R = K x Log 10 (D/d)

R = Значение сопротивления изоляции в МОм на 305 метров кабеля
К = Постоянная изоляционного материала. (Электроизоляционная лакоткань = 2460, термопластичный полиэтилен = 50000, композитный полиэтилен = 30000)
D = Внешний диаметр изоляции проводника для одножильного провода или кабеля (D = d + 2c + 2b диаметр одножильного кабеля)
d = Диаметр проводника
c = Толщина изоляции проводника
b = Толщина изолирующей оболочки

Высоковольтное тестирование нового кабеля XLPE (в соответствии со стандартом ETSA)

Кабели 11 кВ и 33 кВ между сердечником и землей (в соответствии со стандартом ETSA


Измерение значения сопротивления изоляции (между проводниками (перекрестная изоляция))

  • первый проводник, для которого проводится измерение перекрестной изоляции, необходимо подключить к выводу Line мегомметра. Другие проводники соединяются вместе (с помощью зажимов типа «крокодил») и подсоединяются к выводу Earth мегомметра. На другом конце проводники не соединяются;
  • после этого поверните ручку или нажмите кнопку мегомметра. На дисплее измерительного прибора будет показано сопротивление изоляции между проводником 1 и остальными проводниками. Показания сопротивления изоляции следует записать;
  • потом подсоедините к выводу Line мегомметра другой проводник, а другие проводники соедините с выводом заземления мегомметра. Проведите измерение.

Измерение значения сопротивления изоляции (изоляция между проводником и землей)

  • подсоедините тестируемый проводник к выводу Line мегомметра;
  • соедините вывод Earth мегомметра с землей.;
  • поверните ручку или нажмите кнопку мегаомметра. На дисплее измерительного прибора будет показано сопротивление изоляции проводников. После поддержания испытательного напряжения в течение минуты до получения стабильных показаний следует записать значение сопротивления изоляции.

Измеряемые значения:

  • если во время периодического тестирования получено сопротивление изоляции подземного кабеля при соответствующей температуре от 5 МОм до 1 МОм на километр, данный кабель должен быть включен в программу замены;
  • если измеренное сопротивление изоляции подземного кабеля при соответствующей температуре от 1000 кОм до 100 кОм на километр, данный кабель следует заменить срочно, в течение года;
  • если измеренное сопротивление изоляции кабеля меньше 100 кОм на километр, данный кабель следует заменить немедленно как аварийный.

6. Значение сопротивления изоляции для линии передачи/распределительной линии

7. Значение сопротивления изоляции для шины панели

Значение сопротивления изоляции для панели = 2 х номинальное напряжение панели в кВ
Например, для панели 5 кВ минимальное сопротивление изоляции 2 х 5 = 10 МОм.

8. Значение сопротивление изоляции для оборудования подстанции

Обычными значениями сопротивления для оборудования подстанции являются:

Типовое значение сопротивление изоляции для оборудования подстанции

Оборудование

Класс мегомметра

Минимальное значение сопротивления изоляции

Автоматический выключатель

(Фаза - Земля)

(Фаза - Фаза)

Цепь управления

(Первичная - Земля)

(Вторичная - Фаза)

Цепь управления

Изолятор

(Фаза - Земля)

(Фаза - Фаза)

Цепь управления

(Фаза - Земля)

Электродвигатель

(Фаза - Земля)

Распределительное устройство LT

(Фаза - Земля)

Трансформатор LT

(Фаза - Земля)

Значение сопротивления изоляции оборудования подстанции в соответствии со стандартом DEP:

Оборудование

Измерение

Значение сопротивления изоляции на момент ввода в эксплуатацию (МОм)

Значение сопротивления изоляции на момент обслуживания (МОм)

Распределительное устройство

Высоковольтная шина

Низковольтная шина

Низковольтная проводка

Кабель (минимально 100 метров)

(10 х кВ) / км

Электродвигатель и генератор

Фаза - Земля

Трансформатор, погруженный в масло

Высоковольтный и низковольтный

Трансформатор, сухого типа

Высоковольтный

Низковольтный

Стационарное оборудование/инструменты

Фаза - Земля

5 кОм на вольт

1 кОм на вольт

Съемное оборудование

Фаза - Земля

Распределительное оборудование

Фаза - Земля

Автоматический выключатель

Цепь питания

2 МОм на кВ

Цепь управления

Цепь постоянного тока - Земля

Цепь LT - Земля

LT - Цепь постоянного тока

9. Значение сопротивления изоляции для бытовой/промышленной проводки

Низкое сопротивление между проводниками фазы и нейтрали или между находящимися под напряжением проводниками и землей будет приводить к возникновению тока утечки. Это приводит к ухудшению изоляции, а также к потерям энергии, что выльется в увеличение эксплуатационных расходов на установленную систему.
При обычных напряжениях электропитания сопротивление между фазой-фазой-нейтралью-землей никогда не должно быть меньше 0,5 МОм.

Кроме тока утечки из-за активного сопротивления изоляции существует также ток утечки из-за ее реактивного сопротивления, так как она работает как диэлектрик конденсатора. Этот ток не рассеивает никакой энергии и не является вредным, но нам нужно измерять активное сопротивление изоляции, поэтому для предотвращения включения в измерение реактивного сопротивления при тестировании используется напряжение постоянного тока.

Однофазная проводка

Тестирование сопротивления изоляции между фазой-нейтралью и землей должно выполняться на всей установке с отключенным включателем питания, при соединенных вместе фазе и нейтрали, с отключенными лампами и другим оборудованием, но при замкнутых автоматических выключателях и при всех замкнутых выключателях цепей.

Если используется переключение на два направления, будет тестироваться только один из двух проводов. Для тестирования другого провода необходимо задействовать оба переключателя на два направления и повторно протестировать систему. При необходимости установку можно тестировать как единое целое, но тогда необходимо получить значение не менее 0,5 МОм.


Трехфазная проводка

В случае очень большой установки, имеющей большое количество параллельных соединений с землей, можно ожидать более низкие показания. В этом случае необходимо повторить тестирование после разделения системы. Каждая из таких частей должна соответствовать минимальным требованиям.

Тестирование сопротивления изоляции должно выполняться между фазой-фазой-нейтралью-землей. Минимально допустимое значение для каждого теста 0,5 МОм.

Тестирование сопротивления изоляции для низкого напряжения

Минимальное значение сопротивления изоляции = 50 МОм / количество электрических розеток (все электрические точки с установочными элементами и вилками)

Минимальное значение сопротивления изоляции = 100 МОм / количество электрических розеток (все электрические точки без установочных элементов и вилок)

Меры безопасности при измерении сопротивления изоляции

Высокое испытательное напряжение может привести к повреждению такого электронного оборудования, как электронные стартеры люминесцентных ламп, сенсорные переключатели, переключатели с диммером, контроллеры электропитания. Поэтому подобное оборудование следует отсоединять.

Также следует отсоединять конденсаторы и индикаторные или контрольные лампы, потому что они могут стать причиной получения неточных результатов тестирования.

Если для проведения тестирования отсоединяется какое-либо оборудование, для него необходимо проводить собственное испытание изоляции с использованием напряжения, которое не приведет к их повреждению. Результат должен соответствовать указанному в стандарте Великобритании или быть не меньше 0,5 МОм, если не указан в стандарте.